991 research outputs found

    Molecular mechanisms that regulate the coupled period of the mammalian circadian clock

    Get PDF
    In mammals, most cells in the brain and peripheral tissues generate circadian (~24hr) rhythms autonomously. These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus (SCN). Within the SCN, the individual rhythms of each neuron are synchronized through intercellular signaling. One important feature of SCN is that the synchronized period is close to the cell population mean of intrinsic periods. In this way, the synchronized period of the SCN stays close to the periods of cells in peripheral tissues. This is important for SCN to entrain cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not known. We use mathematical modeling and analysis to show that the mechanism of transcription repression plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein sequestration. In contrast, the coupled period is far from the mean if repression occurs through highly nonlinear Hill-type regulation (e.g. oligomer- or phosphorylation-based repression). Furthermore, we find that the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period. These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular organisms, mammals and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the population mean (~24hr).Comment: 21 pages, 16 figure

    Investigation of Nondestructive Testing Methods for Friction Stir Welding

    Get PDF
    Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturingā€”where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive testing methods are being used. This paper presents background to the process of friction stir welding and identifies major process parameters that affect the weld properties, the origin, and types of defects that can occur, and potential nondestructive methods for ex-situ detection and in-situ identification of these potential defects, which can then allow for corrective action to be taken

    Long-term biocompatibility, imaging appearance and tissue effects associated with delivery of a novel radiopaque embolization bead for image-guided therapy

    Get PDF
    The objective of this study was to undertake a comprehensive long-term biocompatibility and imaging assessment of a new intrinsically radiopaque bead (LC Bead LUMIā„¢) for use in transarterial embolization. The sterilized device and its extracts were subjected to the raft of ISO10993 biocompatibility tests that demonstrated safety with respect to cytotoxicity, mutagenicity, blood contact, irritation, sensitization, systemic toxicity and tissue reaction. Intra-arterial administration was performed in a swine model of hepatic arterial embolization in which 0.22ā€“1 mL of sedimented bead volume was administered to the targeted lobe(s) of the liver. The beads could be visualized during the embolization procedure with fluoroscopy, DSA and single X-ray snapshot imaging modalities. CT imaging was performed before and 1 h after embolization and then again at 7, 14, 30 and 90 days. LC Bead LUMIā„¢ could be clearly visualized in the hepatic arteries with or without administration of IV contrast and appeared more dense than soluble contrast agent. The CT density of the beads did not deteriorate during the 90 day evaluation period. The beads embolized predictably and effectively, resulting in areas devoid of contrast enhancement on CT imaging suggesting ischaemia-induced necrosis nearby the sites of occlusion. Instances of off target embolization were easily detected on imaging and confirmed pathologically. Histopathology revealed a classic foreign body response at 14 days, which resolved over time leading to fibrosis and eventual integration of the beads into the tissue, demonstrating excellent long-term tissue compatibility

    A comparative study of WASP-67b and HAT-P-38b from WFC3 data

    Get PDF
    Atmospheric temperature and planetary gravity are thought to be the main parameters affecting cloud formation in giant exoplanet atmospheres. Recent attempts to understand cloud formation have explored wide regions of the equilibrium temperature-gravity parameter space. In this study, we instead compare the case of two giant planets with nearly identical equilibrium temperature (TeqT_\mathrm{eq} āˆ¼1050ā€‰K\sim 1050 \, \mathrm{K}) and gravity (gāˆ¼10ā€‰mā€‰sāˆ’1)g \sim 10 \, \mathrm{m \, s}^{-1}). During HSTHST Cycle 23, we collected WFC3/G141 observations of the two planets, WASP-67 b and HAT-P-38 b. HAT-P-38 b, with mass 0.42 MJ_\mathrm{J} and radius 1.4 RJR_\mathrm{J}, exhibits a relatively clear atmosphere with a clear detection of water. We refine the orbital period of this planet with new observations, obtaining P=4.6403294Ā±0.0000055ā€‰dP = 4.6403294 \pm 0.0000055 \, \mathrm{d}. WASP-67 b, with mass 0.27 MJ_\mathrm{J} and radius 0.83 RJR_\mathrm{J}, shows a more muted water absorption feature than that of HAT-P-38 b, indicating either a higher cloud deck in the atmosphere or a more metal-rich composition. The difference in the spectra supports the hypothesis that giant exoplanet atmospheres carry traces of their formation history. Future observations in the visible and mid-infrared are needed to probe the aerosol properties and constrain the evolutionary scenario of these planets.Comment: 16 pages, 17 figures, 8 tables, accepted for publication in The Astronomical Journa

    Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Full text link
    11 hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient SSS17a was discovered in the galaxy NGC 4993. While the gravitational wave data indicate GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints of the nature of that system. Here we synthesize all optical and near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration. We find that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We find that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.Comment: 21 pages, 4 figures, accepted to Scienc

    Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1-linked Parkinson disease patient fibroblasts.

    Get PDF
    Mutations in Ī²-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca2+ release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in Ī²-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca2+ release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca2+ signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of Ī²-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca2+ signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca2+ store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca2+ stores by pathogenic GBA1 mutations may therefore feature in PD

    West Nile Virus Epidemics in North America Are Driven by Shifts in Mosquito Feeding Behavior

    Get PDF
    West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans
    • ā€¦
    corecore