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ABSTRACT In mammals, most cells in the brain and peripheral tissues generate circadian (~24 h) rhythms autonomously.
These self-sustained rhythms are coordinated and entrained by a master circadian clock in the suprachiasmatic nucleus
(SCN). Within the SCN, the individual rhythms of each neuron are synchronized through intercellular signaling. One important
feature of SCN is that the synchronized period is close to the population mean of cells’ intrinsic periods. In this way, the synchro-
nized period of the SCN stays close to the periods of cells in peripheral tissues. This is important because the SCN must entrain
cells throughout the body. However, the mechanism that drives the period of the coupled SCN cells to the population mean is not
known. We use mathematical modeling and analysis to show that the mechanism of transcription repression in the intracellular
feedback loop plays a pivotal role in regulating the coupled period. Specifically, we use phase response curve analysis to show
that the coupled period within the SCN stays near the population mean if transcriptional repression occurs via protein seques-
tration. In contrast, the coupled period is far from themean if repression occurs through highly nonlinear Hill-type regulation (e.g.,
oligomer- or phosphorylation-based repression), as widely assumed in previous mathematical models. Furthermore, we find that
the timescale of intercellular coupling needs to be fast compared to that of intracellular feedback to maintain the mean period.
These findings reveal the important relationship between the intracellular transcriptional feedback loop and intercellular
coupling. This relationship explains why transcriptional repression appears to occur via protein sequestration in multicellular
organisms, mammals, and Drosophila, in contrast with the phosphorylation-based repression in unicellular organisms and
syncytia. That is, transition to protein sequestration is essential for synchronizing multiple cells with a period close to the
population mean (~24 h).
INTRODUCTION
Physiological and metabolic processes such as sleep, blood
pressure, and hormone secretion exhibit circadian (~24 h)
rhythms in mammals (1). These rhythms are mainly regu-
lated by the master circadian clock in the suprachiasmatic
nucleus (SCN) of the hypothalamus (2). The SCN consists
of ~20,000 neurons, each of which exhibits rhythmic gene
expression. These rhythms are mediated by an intracellular
transcriptional feedback loop, in which PER/CRY dimers
inhibit their own transcriptional activators, BMAL1/
CLOCK dimers (3,4). The neuronal population’s rhythm
is synchronized through intercellular coupling via various
neurotransmitters, such as VIP, AVP, GRP, and GABA (5).
In particular, experimental evidence points to VIP as a major
coupling signal (6), without which SCN fails to synchronize
individual rhythms (7).

Intercellular coupling within the SCN plays a pivotal
role in generating robust and coherent rhythms. Individual
cells within the SCN oscillate at their own periods and
phases. Intercellular coupling synchronizes these rhythms,
resulting in a global rhythm (7–9,50). Furthermore, a broad
distribution of periods of individual cells becomes narrow
with the coupling, which allows precise timekeeping by
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SCN (Fig. 1) (7,8,10,50). Coupling can also restore the
rhythms among cells that lose rhythms due to mutations
(11,12). These properties of coupling within SCN have
been widely explored with mathematical models. Mathe-
matical models of SCN have shown how VIP signaling
can synchronize heterogeneous rhythms (13–16) and
confirmed that coupling increases the resistance of rhythms
to genetic mutation (11,12), intrinsic noise (17), and
external entrainment signal (18).

One feature of intercellular coupling within the SCN that
is not shared by other coupled biological oscillators (e.g.,
segmentation clock) (19–21) is that the coupled period,
i.e., the global period at which all cells synchronize, is close
to the population mean period of the individual cells (Fig. 1)
(7,8,10,50). This feature is important because the SCN func-
tions as a master clock that entrains peripheral clocks (1).
That is, individual cells in peripheral tissues (e.g., liver
and heart) generate rhythms autonomously with periods of
~24 h but are entrained by the rhythms of SCN. The closer
the period of the SCN to the periods of peripheral clocks,
the more likely that entrainment occurs; this generates
coherent systemic rhythms in the organism (1,22). However,
it is not understood what drives the period of the coupled
SCN close to the population mean. Furthermore, mathemat-
ical models based on genetic feedback loops have shown
significant differences (~3–6 h) between the coupled period
http://dx.doi.org/10.1016/j.bpj.2014.02.039
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FIGURE 2 Two types of gene regulation used in mathematical models of

the circadian clocks. (A) Protein sequestration has been used to model the

repressor (Per1/2 and Cry1/2) gene regulation, in which the repressors

(PER-CRY) inactivate the activators (BMAL1-CLOCK) via 1:1 stoichio-

metric binding. (B) Hill-type regulation of repressor transcription is derived

assuming fast cooperative binding reactions, such as oligomeric binding of

repressor proteins to their own promoter. Phosphorylation-based repression

can also induce Hill-type regulation (see Fig. S1 in the Supporting Mate-

rial). (C) Transcriptional regulation via protein sequestration has an approx-

imately piecewise linear relationship between repressor and transcription

rate. (D) Hill-type regulation yields a sigmoidal relationship. To see this

figure in color, go online.

FIGURE 1 Coupling maintains population mean of periods in circadian

clocks. When intercellular coupling within the SCN is disrupted either by

(A) enzymatic dispersion or (B) VIP�/�, the distribution of periods of indi-

vidual neurons broadens. However, the mean periods (indicated by arrows

at the top of each panel) do not significantly change when coupling is dis-

rupted. Panel A: WT, 23.3 5 1 and dispersed SCN, 22.7 5 2.9; panel B:

WT, 23.6 5 1.7 and VIP�/�, 25 5 4. Panels A and B are reproduced

from Ono et al. (8) and Aton et al. (7), respectively, with permission

from Nature Publishing Group Ltd. To see this figure in color, go online.
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and population mean, inconsistent with experimental find-
ings (Fig. 1) (13–15).

Previous mathematical models have typically relied on
Hill functions to describe transcriptional repression in the
negative feedback loop (13–15). However, in a recent theo-
retical study it was shown that circadian clocks behave very
differently when transcriptional repression occurs via pro-
tein sequestration, in which repressor inhibits a transcrip-
tional activator via 1:1 stoichiometric binding (Fig. 2 A),
rather than highly nonlinear Hill-type regulation (Fig. 2 B
and see Fig. S1 in the Supporting Material) (23). That is,
a model based on protein sequestration successfully repro-
duced various experimental observations that have not
been addressed by previous models based on Hill-type regu-
lation, such as the importance of a 1:1 molar ratio between
repressor and activator and an additional negative feedback
loop via Rev-erba/b for robust circadian timekeeping
(23–25). This indicates that the mechanism of transcrip-
tional regulation plays a key role in determining the behav-
iors of circadian clocks.

Interestingly, recent experimental studies have found that
protein sequestration is responsible for repression in the
negative feedback loops of circadian clocks in multicellular
organisms (Drosophila melanogaster and mammals), which
have intercellular coupling among the pacemaker cells in
the brain (24,26,27,29). In contrast, a phosphorylation-
based repression mechanism appears to be used in organ-
isms which do not have this intercellular coupling. In a
syncytium, Neurospora crassa, the repressors transiently
bind activators and induce phosphorylation at multiple
activator sites, and thus repress its transcriptional activity
(see Fig. S1) (30). A similar phosphorylation-based repres-
sion mechanism is used in a unicellular organism, cyano-
bacteria, in which KaiA phosphorylates the multiple
sites of KaiC (31), which leads to Hill-type regulation
(32,33). These different repression mechanisms of organ-
isms depending on the presence of intercellular coupling
Biophysical Journal 106(9) 2071–2081
raises the question of whether the transition to protein
sequestration is important for synchronizing the rhythms
of multiple cells.

Here, we show that when transcriptional repression
occurs via protein sequestration, but not Hill-type regula-
tion, the coupled periods are near the mean period of the in-
dividual cells within the SCN. To do this, we first compare
two simple mathematical models of intracellular circadian
clocks, in which transcription is regulated via either protein
sequestration (PS model) (23) or Hill-type repression (HT
model) (34). We find that when individual oscillators are
coupled in the PS model, the period of the synchronized
rhythm is close to the population mean. However, the
coupled period is far from the population mean in the HT
model. We find that this difference is due to the functional
form of the transcriptional regulation in the models—piece-
wise linear in the PS model and sigmoidal in the HT model.
As a result, the PS model has an instantaneous phase
response curve (iPRC) with balanced advance and delay re-
gions, which leads the coupled periods to be close to the
population mean. In contrast, sigmoidal transcriptional
regulation leads to an unbalanced iPRC in the HT model.
Finally, we find that the timescale of intercellular coupling
also plays an important role in determining the coupled
period. That is, the timescale of intercellular coupling needs
to be faster than the timescale of the intracellular feedback
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loop (~24 h) to synchronize rhythms with the period close to
the population mean.

We found that the mechanisms underlying the intracel-
lular feedback loop play a pivotal role in regulating the
coupled period. This reveals that two of the major
functions of the SCN—the generation of a rhythm within
a cell and synchronization of the rhythm across the
population—are closely related. Furthermore, these findings
indicate that the intracellular feedback mechanism of multi-
cellular organisms—a different type of mechanism from
that of unicellular organisms and syncytia—is necessary
to synchronize rhythms of multiple cells with the population
mean period (~24 h).
RESULTS

Two types of gene regulation used in previous
mathematical models of the circadian clocks

To explore the role of transcriptional repression mechanisms
in regulating the coupled period, we compare two main
types of gene regulation, which have been used in previous
mathematical models of the mammalian circadian clocks:
protein sequestration and Hill-type repression (Fig. 2, A
and B). In protein sequestration, repressors (PER-CRY)
tightly bind the transcriptional activators (BMAL1-
CLOCK) in a 1:1 stoichiometric complex, preventing acti-
vators from upregulating transcription (23,24,26,27)
(Fig. 2 A). Because repressor binding inhibits the activators,
the transcription rate of the repressor is proportional to the
fraction of free activators. Assuming rapid binding between
repressors and activators, the fraction of free activators can
be described by (23,35)

f ðRÞ ¼
A� R� Kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� R� KdÞ2 þ 4AKd

q
2A

!Kd/0

Max

�
1� R

A
; 0

�
; (1)

where R and A are the concentrations of repressor and acti-
vator, respectively. If the repressors bind tightly to activators
(Kd << 1), the fraction of free activators can be approxi-
mated with a piecewise linear function of the molar ratio
between repressors and activators (Fig. 2 C). When the con-
centration of repressor exceeds that of the activator, the re-
pressors strongly bind all the activators, and transcription is
completely inhibited. As the concentration of repressors de-
creases, the activators are released proportionally to the
decrease of repressors, and the transcription rate increases
linearly.

Hill-type repression is another mechanism that has been
used widely in models of circadian clocks since the develop-
ment of Goodwin oscillator (13–16,33,34,36–38,43). In this
type of gene regulation, repressors cooperatively bind to
operator sites of their own gene’s promoter (Fig. 2 B).
Assuming rapid cooperative binding, the fraction of un-
bound promoters as a function of repressor can be described
by the Hill function (33),

f ðRÞ ¼ 1

1þ ðR=KdÞn: (2)

Here the relationship between the concentration of re-

pressor and transcription rate is sigmoidal—as the repressor
decreases, the transcriptional activity increases to a
maximum and then saturates (Fig. 2 D). Furthermore, this
Hill function also describes phosphorylation-based repres-
sion mechanisms, in which the repressor phosphorylates
the multiple sites of activator in a cooperative manner
(see Fig. S1) (33).
Mathematical models of the intracellular feedback
loop in a single cell

The two different types of gene regulation lead to two
different mathematical models of the transcriptional nega-
tive feedback loop in circadian clocks (Fig. 2, A and B)
(23,33,34,38),

dM

dt
¼ a1f ðRÞ � b1M;

dRc

dt
¼ a2M � b2Rc;

dR

dt
¼ a3Rc � b3R:

(3)

Here M, Rc, and R represent the concentration of repressor

mRNA, cytoplasmic repressor protein, and nuclear re-
pressor protein, respectively. In Eq. 3, mRNA is first trans-
lated into repressor protein in the cytoplasm. This protein
then enters the nucleus and inhibits its own transcription
either through protein sequestration (PS model) or Hill-
type regulation (HT model). Thus, the difference between
the two models is the form of the mRNA transcription
rate, f(R) (Eqs. 1 or 2). We next put the models into dimen-
sionless form, reducing the number of parameters: Scaling
ofM, Rc, and R normalizes all production rates (ai). Further-
more, we assume that the clearance rates of all species (bi)
are equal, increasing the chance of oscillations in the
Goodwin oscillator (39,40). With this assumption and non-
dimensionalization of time, all the clearance rates (bi) can
be normalized. The resulting models have two free parame-
ters, both in the transcription function, f(R) (23):

dM

dt
¼ f ðRÞ �M;

dRc

dt
¼ M � Rc;

dR

dt
¼ Rc � R:

(4)
Biophysical Journal 106(9) 2071–2081
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In the PSmodel, the two parameters, the activator concentra-
tion (A) and dissociation constant between the activator and
repressor (Kd) in the Eq. 1, determine the dynamics of model.
In theHTmodel, theHill coefficient (n) and dissociation con-
stant between the repressor and gene promoter (Kd) in Eq. 2
govern the dynamics of HT model. The parameter values for
the PS model are selected to be the same as in the original
model (23). The two free parameters in the HT model are
selected such that the oscillatory solutions in both models
have the similar periods and amplitudes (see Fig. S2).
Mathematical models of intercellular coupling
among multiple cells

Next, we couple multiple single cell models through the
intercellular signal, VIP (V) (Fig. 3),

dMi

dt
¼ f ðRiÞ �Mi þ m

N

XN
i¼ 1

Vi;

dRci

dt
¼ Mi � Rci;

dRi

dt
¼ Rci � Ri;

dVi

dt
¼ tðf ðRiÞ � ViÞ;

(5)

where N denotes the number of cells, each indexed by i ¼

1,., N. In this model, each cell releases VIP into the extra-
cellular space at a rate proportional to the activity of the pro-
moter, f(R) (41,42). Similar to previous models, we assume
that VIP in the extracellular space enters each cell at an equal
rate because the VIP diffusion is fast relative to the period
(~24 h) (13,43). Once it has entered the cell, VIP promotes
the transcription of the repressor gene (44–46). The parame-
ters m and t describe the coupling strength and the timescale
of intercellular coupling, respectively. When m ¼ 1, the
strength of coupling-induced transcription of the repressor
ðm=NP

i¼1ViÞ is similar to that of the intracellular feedback
loop (f(R)). Experimental data indicates m < 1 because
FIGURE 3 Description of intercellular coupling in the model. The

coupled signal (VIP) is rhythmically released into the extracellular space

and then enters all cells at equal rate and promotes the transcription of

repressor through the CREB promoter. To see this figure in color, go online.
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transcription of Per2 is increased by ~20–40% upon VIP
treatment (47). The timescale of intercellular coupling, t,
represents how quickly VIP is released from cells and ac-
tivates transcription in neighboring cells relative to the
intracellular feedback loop (~24 h). Previous experiments
showed the release of VIP peaks within 30 min after the
SCN is subjected to a light pulse or treated with the gluta-
mate agonist, NMDA (N-methyl-D-aspartate) (48).
Furthermore, ~5 min after VIP treatment, active CREB rea-
ches its peak in rat anterior pituitary (49). Overall, these
experimental data indicate that intercellular coupling oc-
curs much faster, compared to the intracellular feedback
loop (~24 h), so we use t ¼ 20 to describe the fast coupling
process. With this choice of coupling timescale, the pro-
duction rate (f(R)) and the degradation rate (Vi) of coupling
signal have a similar phase in the model. Thus, the rhythm
of mRNA produced by the intracellular feedback loop,
f(R), and the rhythm of mRNA produced by intercellular
coupling, m=N

P
Vi, show similar phases in the model.

This matches recent experimental findings showing that
the peaks of Per1 transcription through the intracellular
feedback loop and intercellular feedback loop are close
to each other (46).
The coupled periods of a fast cell and a slow cell

The main question we address in this work is how the pe-
riods of individual cells change in the presence of coupling.
To start, we consider a pair of cells with different intrinsic
periods. Following previous studies, we scale time differ-
ently in two copies of a model cell (Eq. 5) to achieve a dif-
ference in periods (13,16). All production and degradation
rates are divided by a rescaling factor, 1 and 1.2, respec-
tively, resulting in periods that differed by 20%. After
coupling the two model cells, we estimated the change in
period using a fast Fourier transform (Fig. 4, A and B). As
the coupling strength increases, the rhythms are synchro-
nized in both the PS and HT models. However, the two
models differ in how the frequency of each oscillator
changes after coupling. As the coupling strength increases
in the PS model, the frequencies of both the fast and slow
cells tend toward the mean frequency of the two uncoupled
cells (Fig. 4 A). Once cells synchronize, the coupled fre-
quency is close to the mean in the PS model. In contrast,
in the HT model, the frequency of the slow cell tends to in-
crease much more than the frequency of the fast cell de-
creases (Fig. 4 B). This trend continues until the two cells
synchronize at a frequency significantly above the mean.
This difference between the PS and HT model does not
depend on parameter choice in Eq. 5 (see Fig. S3). Further-
more, when we use Michaelis-Menten type coupling (13,14)
rather than linear coupling of VIP between cells in Eq. 5, we
obtain similar results (see Fig. S4). Next, we test whether
the behavior of the HT model is due to the high Hill
coefficient. We extended the HT model to include more



FIGURE 4 The coupled periods of heteroge-

neous cells in the PS and HT model. (A) When a

fast cell and a slow cell are coupled, the

coupled frequencies, at which two cells synchro-

nize, of the PS model are similar to the mean fre-

quency of uncoupled cells, but (B) those of HT

model is greater than the mean frequency. Fre-

quencies are estimated using a fast Fourier

transform and normalized to make the mean

frequency unity. Two different frequencies of

single cell models are obtained by dividing all pro-

duction and degradation rates by common rescaling

factors of 1 and 1.2, respectively. These results are

robust against parameter changes (see Fig. S3)

and the introduction of nonlinearities in the coupling

(see Fig. S4). Here, we represent the results

involving m ¼ 0, 0.05, 0.1, ., 0.3. (C) When 100

cells with different periods are coupled, the coupled

frequencies of the PS model converge to the mean

frequency of uncoupled cells, but (D) those of the

HT model become larger than the mean frequency.

Here, 100 rescaling factors for different frequencies

are drawn randomly from a normal distribution of

mean 1 and standard deviation 0.15, matching the

experimental data (Fig. 1, A and B). See Fig. S6

for stronger coupling strengths and Fig. S7 for cell

populations with larger heterogeneities. To see this

figure in color, go online.
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intermediate reaction steps, which allows the model to oscil-
late with a lower Hill coefficient (32,39,40). Even with a low
Hill coefficient, the coupled period of the model is still far
from the mean period in this extended HT model (see
Fig. S5).
The coupled periods of heterogeneous cell
population

Next, we test how the coupling affects the periods in a pop-
ulation of 100 cells with different intrinsic periods. To
achieve heterogeneity we again rescale the time of each
cell in the population using 100 rescaling factors sampled
from a normal distribution with mean 1 and standard devia-
tion 0.15. This generates variability in periods similar to that
observed in the SCN (Fig. 1) (7,8,50). In the PS model,
increasing coupling strength again causes the frequencies
of individual cells to cluster around the population mean
of the uncoupled cells (Fig. 4 C). When coupling strength
exceeds a threshold (m ~ 0.3), rhythms are synchronized
with frequencies close to the population mean (Fig. 4 C).
However, in the HT model, as coupling strength increases,
frequencies cluster around a value greater than the mean fre-
quency of the uncoupled cells (Fig. 4 D). When the coupling
strength exceeds a threshold (m ~ 0.3), the population syn-
chronizes at a frequency significantly above the population
mean (Fig. 4 D). The frequencies of the coupled HT model
only approach the population mean when the coupling
strength far exceeds the threshold (m ~ 1) (see Fig. S6).
With coupling this strong, the coupled frequencies of the
PS model become slightly smaller than the mean frequency
(see Fig. S6). However, experimental evidence suggests that
the coupling strength is much smaller than unity (47).
Furthermore, the HT model can exhibit synchronous oscil-
lations at a frequency close to the population mean only at
an unrealistically large coupling strength. This would
require a large amount of neurotransmitters at a high cost
to the organism. Thus, the PS model with the weak coupling
provides a more efficient mechanism for synchrony than the
HT model with strong coupling. We also examine systems
of oscillators whose distribution of uncoupled periods had
a larger variability. Even in this case, the PS model synchro-
nizes at frequencies that are close to the population mean
(see Fig. S7 A). However, the frequencies of the synchro-
nized HT model are again much larger than the mean with
the realistic coupling strength (see Fig. S7 B).
iPRCs and average interaction functions (AIFs) of
PS model and HT model

Wehave shown that the period of the synchronous population
is close to the population mean for the PS model, but signif-
icantly shorter than the population mean for the HT model
(Fig. 4). To understand the mechanisms that underlie this
difference, we employ the theory for weakly coupled oscilla-
tors, which has been used widely to understand synchroniza-
tion in networks of oscillators (51–53). Assuming weak
coupling (47), the theory allows us to describe the essential
dynamics of the four-dimensional cell model (Eq. 5) using
a single differential equation for the phase of the limit cycle.
Biophysical Journal 106(9) 2071–2081
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To derive the equation for the phase dynamics, first, we
need to estimate the iPRCs, Z(q), in response to mRNA
perturbation,

ZðqÞ ¼ lim
DM/0

Dq

DM
;

where DM represents the brief perturbation of mRNA and

Dq represents the phase change due to the perturbation of
mRNA. Numerically we calculate the iPRCs for both the
PS and HT models (54). The advance and delay region of
the iPRC are balanced in the PS model (Fig. 5 A), whereas
the advance regions of the iPRC is much larger than the
delay region in the HT model (Fig. 5 B). Importantly, the
iPRC of the PS model more closely resembles the experi-
mentally measured PRC than does the iPRC of the HT
model. When the PRC is measured in response to 100 nM
VIP in the SCN, the delay region is slightly larger than
the advance region (47).
FIGURE 5 iPRCs and AIFs explain the different coupled periods of the

PS and HT models. (A) The iPRC of the PS model has similarly sized

advance and delay regions whereas (B) the iPRC of HT model has a larger

advance region. (C) The steepness of transcription rates of PS model are

similar when iPRC attains a maximum or minimum whereas (D) those of

HT model show significant differences. (E) The AIF of the PS model pre-

dicts that the frequencies of the fast cell and slow cell change with a similar

magnitude when they are synchronized, (F) but the AIF of HT model pre-

dicts that a slow cell has a larger frequency change than the fast cell, match-

ing previous simulations (Fig. 4). See Fig. S8 for AIFs with different

parameter choices. To see this figure in color, go online.
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Next, we explore why the iPRC of the PS model is more
balanced than that of the HT model. To do this, we analyze
the magnitudes of the maxima and minima of the iPRCs in
the models, which indicate the largest phase advance and
delay, respectively. We found that the extrema of the iPRC
occur when the time derivative of the mRNA is zero—i.e.,
when the transcription and degradation rates of the mRNA
are equal (arrows in Fig. 5, C and D). This occurs because
the phase of the oscillation is most sensitive to mRNA
changes when the time derivative of the mRNA is zero
(see the Appendix). Furthermore, we found that the slope
of the transcription rate at these times appears to determine
the extrema of the iPRC. That is, the maximum and mini-
mum of the iPRC is approximately proportional to the in-
verse of the slope of transcription rates (see Appendix for
details)

ZðqÞextremaz
1

b

�W
�� e�e�T�T

�
1þWð � e�e�T�TÞf

1

b
;

where b is the slope of transcription rates at the phase when

the iPRC is extrema, T is the reference time, and W is the
Lambert W function—a branch of the inverse of WeW.
When the iPRC attains its maximum or minimum, the
steepness of transcription rates is similar in the PS model
(Fig. 5 C) because the transcriptional regulation curve is
piecewise linear (Fig. 2 C). However, the steepness of tran-
scription rates is very different in the HT model (Fig. 5 D)
because the transcriptional regulation curve is sigmoidal
(Fig. 2 D). In particular, when the iPRC is close to the
maximum, the slope of the transcription rate is very small
in the HT model, resulting in an iPRC with a large
maximum in the HT model. Therefore, the PS model has
a balanced iPRC due to its approximately piecewise linear
gene regulation, but the HT model has an iPRC with a larger
advance region due to sigmoidal gene regulation.

Finally, by convolving these iPRCs with the coupling
signal, we can estimate the equations for the phases of
two coupled heterogeneous cells (53):

dq

dt
¼ uþ m

Period

Z Period

0

Zð~tÞVð~tÞ þ V 0ð~t þ q0 � qÞ
2

d~t

¼ uþ mH
�
q
0 � q

�
;

dq0

dt
¼ u0 þ m

Period

Z Period

0

Zð~tÞVð~tÞ þ V 0ð~t þ q� q0Þ
2

d~t

¼ u0 þ mHðq� q0Þ:

(6)

Here u and u0 represent the two different frequencies of

the individual cells, and the average interaction function
(AIF), H(q0 � q) describes the phase change due to the
coupling signal. Furthermore, by subtracting these two
phase equations (Eq. 6), we can generate an equation for
the phase difference f ¼ q0 � q,
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df

dt
¼ w0 � wþ mðHð�fÞ � HðfÞÞ
¼ Duþ mðHð�fÞ � HðfÞÞ:

(7)

When synchronization occurs, the phase difference (f) will

reach steady state and the left side of Eq. 7 will become
zero, so that

Du ¼ mðHðfÞ � Hð�fÞÞ: (8)

The solution (f) of Eq. 8 describes the stable and constant

phase difference of two cells when they are synchronized.
Therefore, when synchronization occurs, due to these stable
and constant phase differences, the AIFs become constant in
Eq. 6. These constant AIFs quantify frequency change of in-
dividual cells due to coupling. The positive (negative) part
of the AIF represents the speeding up (slowing down) of fre-
quency due to coupling. The AIFs of the PS model show a
balance between the positive and negative regions. Thus, a
slow cell and a fast cell show similar changes in their fre-
quencies to the coupled frequency when they are synchro-
nized (Fig. 5 E), matching previous simulations (Fig. 4, A
and C). Furthermore, the balanced AIFs of the PS model
do not depend on our choice of parameters (see Fig. S8), ex-
plaining why the coupled frequencies are close to the mean
frequency regardless of parameter choice (see Fig. S3).
However, the AIFs in the HT model have a positive region
that is larger than the negative region. Thus, coupling will
alter the frequency of a slow cell more than a fast cell
(Fig. 5 F), matching our simulations (Fig. 4, B and D).

In summary, the PS model has balanced iPRC and AIF
due to piecewise linear gene regulation, but the HT model
has an iPRC and AIF with a larger positive region due to
sigmoidal gene regulation. These results show the tight rela-
tionship between the intracellular feedback loop (the shape
of transcription regulation curves) and intercellular coupling
(AIFs) (Figs. 2 and 5).
Relationship between the timescale of the
coupling signal and coupled periods

We have assumed that the timescale of intercellular
coupling is faster than the timescale of the intracellular
feedback loop in the model (t [1 in Eq. 5), matching
experimental data of circadian clocks (46,48,49). Interest-
ingly, in somite clocks, which regulate the segmentation
timing in developing embryos, the timescale of intercellular
coupling is similar to that of the intracellular feedback loop
(19,55). Previous studies have found that delays in coupling
can produce coupled periods that differ significantly from
the mean period (19). We test whether the speed of the
coupling signal affects the coupled periods in our models.
Similar to somite clocks, in both the PS and HT models,
the coupled frequencies become significantly smaller than
the mean frequency when the timescale of the coupling
signal is similar to that of the intracellular feedback loop
(Fig. 6). Furthermore, with slow coupling, stronger coupling
strengths are required for synchronization than with fast
coupling (Fig. 4, C and D). In particular, the oscillations
of the HT model cease when coupling strengths are between
0.4 and 0.7, a phenomenon known as ‘‘oscillation death’’
(13) (Fig. 6 B). This suggests coupling should be fast for a
population of cells to synchronize at the mean frequency
of the uncoupled cells.
DISCUSSION

The mammalian circadian clock is a hierarchical system, in
which the master clock in SCN functions as a pacemaker
and synchronizer of peripheral clocks to generate coherent
systemic rhythms throughout the body (5,6). The synchroni-
zation between the master and peripheral clocks is more
likely if their periods are close, which can be achieved
when the coupled period of the SCN is close to its popula-
tion mean period (Fig. 1). In this work, we found that
such parity can be achieved if two important mechanisms
of intra- and intercellular feedback loop are present in the
SCN: transcriptional regulation via protein sequestration
(Fig. 4), and intercellular coupling that is fast compared to
the intracellular feedback loop (Fig. 6). Using the theory
of weakly coupled oscillators (51–54), we found that the
piecewise linear gene regulation with protein sequestration
(Fig. 2 C) is key for the population to synchronize with
the population mean period. (Fig. 4. A and C) When tran-
scriptional regulation is piecewise linear (Fig. 2 C) rather
FIGURE 6 When the speed of coupling signal is

slow, the coupled periods become longer than

mean periods. Here, t ¼ 1. Other parameters are

the same as Fig. 4, C and D. To see this figure in

color, go online.
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than sigmoidal (Fig. 2 D), the iPRCs and AIFs are balanced
(Fig. 5 E), and the coupled periods are close to the popula-
tion mean period (Fig. 4 B and D). Interestingly, only pro-
tein sequestration appears to lead piecewise linear gene
regulation among other proposed rhythm generating mech-
anisms such as oligomerization, multiple phosphorylation,
and cooperative enzyme kinetics (32). However, it would
be interesting to examine further if such exist and study their
effect on synchronous oscillations.

Circadian clocks are widely found in organisms as diverse
as bacteria, algae, plants, fungi, insects, and mammals (56).
Whereas each of these organisms appear to use an intracel-
lular negative feedback loop to generate circadian rhythms,
there is a variety of mechanisms by which negative feedback
is mediated. In mammals and Drosophila, the repressor
(PER) appears to inhibit the activator (BMAL1-CLOCK
in mammals and CYC-CLK in Drosophila) through protein
sequestration. In both of these clocks, repressors tightly bind
activators in a 1:1 stoichiometric complex, prohibiting acti-
vators from binding DNA (24,26,27,29). In contrast, a phos-
phorylation-based repression mechanism appears to be used
in Neurospora crassa (see Fig. S1). Here, the repressor
(FRQ) binds the activator (WC complex) transiently and re-
cruits kinases, which phosphorylate multiple sites of the
activator (WC complex) and represses the transcriptional
activity of the activator (30). Furthermore, the repressor
concentration in Neurospora is much lower than that of
the activator in nucleus, because kinase at low concentration
is usually enough to phosphorylate its substrate (57–59). A
similar phosphorylation-based repression mechanism is
used in cyanobacteria, in which KaiA phosphorylates the
multiple-sites of KaiC (31).

Taken together, protein sequestration appears to be used
as a repression mechanism in multicellular organisms,
mammals, and Drosophila, but not in a syncytium, Neuros-
pora and a unicellular organism, cyanobacteria. This raises
the question of why different mechanisms are used for tran-
scriptional regulation depending on the type of organism. It
is known that repression through phosphorylation at multi-
ple sites results in Hill-type regulation (32,33) (Fig. 2 D
and see Fig. S1), which cannot maintain the mean period
after intercellular coupling with an excitatory neurotrans-
mitter (Fig. 4, B and D). Our work indicates that a transition
from phosphorylation-based repression to protein sequestra-
tion may be necessary to synchronize rhythms of multiple
cells at a population mean period (~24 h) (Figs. 4 and 5).

We have shown that protein sequestration is required to
synchronize rhythms at the mean period (Fig. 4) under a
specific type of coupling used in mammalian circadian
clocks (Fig. 3). Different types of coupling may require dif-
ferent types of transcriptional regulation to achieve such
synchrony. Indeed, a recent modeling study shows that
phosphorylation-based repression can also lead to syn-
chrony of multiple rhythms at the mean period when a com-
mon enzyme is shared for phosphorylation, which leads a
Biophysical Journal 106(9) 2071–2081
intracellular coupling (60). This type of coupling appears
to occur in the circadian clocks of a multinucleate system,
Neurospora, in which cytoplasm and organelles, including
nuclei, move between compartments due to an incomplete
cross wall (61). Indeed, fused strains of Neurospora circa-
dian clock synchronize multiple rhythms at their mean
period even with phosphorylation-based repression (62).
It would be interesting to explore how transcriptional regu-
lation affects the coupled period under various coupling
mechanisms.

Many coupled oscillator systems other than circadian
oscillators have been identified in biological systems (63).
Dictyostelium discoideum cellular oscillators are coupled
by an intercellular cAMP signal (64). In the vertebrate
embryo, Her1 rhythms are synchronized through the
Delta-Notch pathway (65). Ca2þ oscillations are also syn-
chronized by gap junctions in pancreatic b-cells (20). In
contrast to circadian clocks, the periods of these systems
change greatly with coupling strength. When a major
coupling signal is disrupted, the mean periods of the cell
population increase by ~20% in the segmentation clocks
of the zebrafish Danio rerio (19). Furthermore, when cell
density is dispersed, which reduces the strength of coupling,
the periods of cAMP oscillations in Dictyostelium and Ca2þ

oscillations in pancreatic b cells change by >50% (20,21).
These results suggest that circadian clocks include mecha-
nisms that tightly regulate the period of synchronized oscil-
lations. Interestingly, the intercellular coupling appears to
be faster than the timescale of the intracellular feedback
loop in circadian clocks (48,49), whereas these timescales
are similar in other cellular oscillators (19,55,64). Further,
circadian clocks (~24 h) have a much longer period than
other coupled cellular oscillators (~3–20 min), which makes
it more plausible that the coupling process occurs much
faster than the intracellular feedback loop. Together with
the above experimental evidence, our simulation results
(Fig. 6) indicate that fast intercellular coupling in the circa-
dian clock plays an important role in synchronizing oscilla-
tion at the population mean period.

In this work, we focused on the repression mechanisms of
transcription, and used simple models of other process
(Fig. 2, A and B and Fig. 3). We expect that our results
hold in more complex systems because our mathematical
analysis shows how the shape of gene regulation curves af-
fects the PRC and coupled period regardless of the
complexity of the system (Fig. 5). Indeed, more-complex
models of circadian clocks based on Hill-type gene regula-
tion exhibit a large difference between coupled and mean
period (13–15). It would be an interesting future work to
see whether the detailed model based on protein sequestra-
tion can exhibit the coupled period similar to the mean
period (23,66). Recent studies have found that neurotrans-
mitters other than VIP (e.g., GABA and AVP) appear to
be involved in the synchronization (5,6,67). Furthermore,
different neurotransmitters are released depending on the
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region of SCN (5,6). Future models should include various
neurotransmitters and spatial heterogeneity with various
network architecture of coupling (15). Testing our predic-
tions in vivo might be difficult, but synthetic biology could
provide a reasonable alternative (68). Transcriptional regu-
lation with the protein sequestration has been successfully
generated in a synthetic system (35). Furthermore, synthetic
systems capable of synchronizing genetic clocks through
quorum sensing have been developed (69). It would be inter-
esting to extend this work to test the role of protein seques-
tration and intercellular coupling timescale in the regulation
of coupled cellular periods using synthetic biology.
APPENDIX: ANALYSIS OF iPRC

There are various methods for estimating the iPRCs numerically (54).

However, the closed form of iPRCs have been analyzed in very limited ex-

amples, such as a simple integrate-fire model or normalized forms of

periodic firing neuronal models near bifurcation points (70,71). The dy-

namics of our model occurs in multiple dimensions with a nonlinearity,

making direct iPRC analysis difficult. To analyze the iPRC of our model,

we approximate the nonlinear term of our model (Eq. 5), f(R) to be a linear

function of time, making our model similar to an integrate-and-fire type

model

dM

dt
¼ ðaþ btÞ �MðtÞ:

This approximation works for an appreciable portion of the time domain in

the PS model because overall transcription rate can be approximated as a
piecewise-linear function of time (Fig. 5 C). However, in the HT model,

the transcription rate changes nonlinearly as time changes (Fig. 5 D), so

this approximation works only locally. Furthermore, this approximation re-

duces the system to a single dimension, which does not consider the effect

of other variables on mRNA concentration. Because the iPRC considers

small perturbations of mRNA concentration, the dynamics will relax

quickly to the original limit cycle. With this approximation, let us estimate

the maximum and minimum of iPRC. As we discussed in the Results, the

extrema of the iPRC occur when the derivative of mRNA is zero or the in-

verse derivative of mRNA is infinite, so that the response of time or phase

to mRNA perturbation is most sensitive (Fig. 5, C and D). If we set the

time to be zero when the iPRC is maximum or minimum, the initial con-

dition should be M(0) ¼ a, which makes the derivative of mRNA zero

initially

dM

dt
¼ ðaþ btÞ �MðtÞ; Mð0Þ ¼ a: (9)

Now, let us consider the small perturbation of mRNA, which can be rep-
resented as perturbed initial condition

dM

dt
¼ ðaþ btÞ �MðtÞ; Mð0Þ ¼ aþ ε: (10)

Then, we can easily find the solutions of original system (Eq. 9) and per-

turbed system (Eq. 10)
MðtÞ ¼ a� bþ bt þ be�t;
MðtÞ ¼ a� bþ bt þ be�t þ εe�t:

(11)

If the perturbation changes phase with Dq, these two solutions will have

following relationship at the reference time T:
MðTÞ ¼ MðT � DqÞ: (12)

In the integrate-and-fire model, the firing time is considered as the

reference time, T (70). However, it is difficult to define T clearly in
our model. T should be small enough for the local approximation of

our model to work. Furthermore, T should be long enough that the

perturbed system relaxes sufficiently close to the original system. The

accurate estimation of T is essential to calculate Dq, but not for our

purpose (see below). By substituting the solutions of Eq. 11 to Eq. 12,

we can get

a� bþ bT þ be�T ¼ a� bþ bðT � DqÞ þ be�ðT�DqÞ

þ εe�ðT�DqÞ;

be�T ¼ �bDqþ ðbþ εÞe�ðT�DqÞ:

This equation includes b, but not a, indicating that Dq will depend on only

b, the slope of transcription rate. Because this equation includes exponen-
tial function, the solution can be expressed by using the Lambert W func-

tion, which is a branch of the inverse of WeW.

Dqðε; TÞ ¼ e�T �W
�
� ð1þ ε=bÞe�e�T�T

�
:

Now let us estimate the extrema of iPRC:
ZðqÞmax=min ¼ lim
ε/0

Dqðε; TÞ
ε

¼ lim
ε/0

vDqðε; TÞ
vε

;

in which the last equality comes from l’Hôpital’s rule. By applying the

property of the Lambert W function,
dWðzÞ
dz

¼ WðzÞ
zð1þWðzÞÞ;

we can get
lim
ε/0

vDqðε; TÞ
vε

¼ lim
ε/0

e�e�T�T

b

1

�ð1þ ε=bÞe�e�T�T

� W
�� ð1þ ε=bÞe�e�T�T

�
1þWð � ð1þ ε=bÞe�e�T�TÞ:

Finally, we find that the extrema of iPRC are approximately proportional

to the inverse of the slope of the transcription rate:
ZðqÞmax=minz lim
ε/0

Dqðε; TÞ
ε

¼ 1

b

�W
�� e�e�T�T

�
1þWð � e�e�T�TÞf

1

b
:

SUPPORTING MATERIAL

Eight figures are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(14)00337-3.

We thank Daniel Forger, Daniel DeWoskin, and Michael Schwemmer for

valuable discussion about this manuscript; and Sato Honma and Daisuke

Ono for providing quantifying data in Fig. 1 A.

This work was funded by the National Institutes of Health, through the joint

National Science Foundation/National Institute of General Medical

Sciences Mathematical Biology Program grant No. R01GM104974 (to

M.R.B. and K.J.), National Science Foundation grants Nos. DMS-

1311755 (to Z.P.K.) and DMS-1122094 (to K.J.), the Robert A. Welch

Foundation grant No. C-1729 (to M.R.B.), and National Science
Biophysical Journal 106(9) 2071–2081

http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00337-3
http://www.biophysj.org/biophysj/supplemental/S0006-3495(14)00337-3


2080 Kim et al.
Foundation grant No. DMS-0931642 to the Mathematical Biosciences

Institute (to J.K.K.).
REFERENCES

1. Dibner, C., U. Schibler, and U. Albrecht. 2010. The mammalian circa-
dian timing system: organization and coordination of central and
peripheral clocks. Annu. Rev. Physiol. 72:517–549.

2. Antle, M. C., and R. Silver. 2005. Orchestrating time: arrangements of
the brain circadian clock. Trends Neurosci. 28:145–151.

3. Ko, C. H., and J. S. Takahashi. 2006. Molecular components of the
mammalian circadian clock. Hum. Mol. Genet. 15:R271–R277.

4. Gallego, M., and D. M. Virshup. 2007. Post-translational modifications
regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol.
8:139–148.

5. Welsh, D. K., J. S. Takahashi, and S. A. Kay. 2010. Suprachiasmatic
nucleus: cell autonomy and network properties. Annu. Rev. Physiol.
72:551–577.

6. Mohawk, J. A., and J. S. Takahashi. 2011. Cell autonomy and syn-
chrony of suprachiasmatic nucleus circadian oscillators. Trends Neuro-
sci. 34:349–358.

7. Aton, S. J., C. S. Colwell,., E. D. Herzog. 2005. Vasoactive intestinal
polypeptide mediates circadian rhythmicity and synchrony in mamma-
lian clock neurons. Nat. Neurosci. 8:476–483.

8. Ono, D., S. Honma, and K. Honma. 2013. Cryptochromes are critical
for the development of coherent circadian rhythms in the mouse supra-
chiasmatic nucleus. Nat. Commun. 4:1666.

9. Yamaguchi, S., H. Isejima, ., H. Okamura. 2003. Synchronization of
cellular clocks in the suprachiasmatic nucleus. Science. 302:1408–
1412.

10. Herzog, E. D., S. J. Aton, ., H. Tei. 2004. Temporal precision in the
mammalian circadian system: a reliable clock from less reliable neu-
rons. J. Biol. Rhythms. 19:35–46.

11. Ko, C. H., Y. R. Yamada, ., J. S. Takahashi. 2010. Emergence of
noise-induced oscillations in the central circadian pacemaker. PLoS
Biol. 8:e1000513.

12. Liu, A. C., D. K. Welsh, ., S. A. Kay. 2007. Intercellular coupling
confers robustness against mutations in the SCN circadian clock
network. Cell. 129:605–616.

13. Gonze, D., S. Bernard, ., H. Herzel. 2005. Spontaneous synchroniza-
tion of coupled circadian oscillators. Biophys. J. 89:120–129.

14. To, T.-L., M. A. Henson,., F. J. Doyle, 3rd. 2007. A molecular model
for intercellular synchronization in the mammalian circadian clock.
Biophys. J. 92:3792–3803.

15. Hafner, M., H. Koeppl, and D. Gonze. 2012. Effect of network archi-
tecture on synchronization and entrainment properties of the circadian
oscillations in the suprachiasmatic nucleus. PLOS Comput. Biol.
8:e1002419.

16. Bernard, S., D. Gonze, ., A. Kramer. 2007. Synchronization-induced
rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
PLOS Comput. Biol. 3:e68.

17. Ueda, H. R., K. Hirose, andM. Iino. 2002. Intercellular coupling mech-
anism for synchronized and noise-resistant circadian oscillators.
J. Theor. Biol. 216:501–512.

18. Abraham, U., A. E. Granada, ., H. Herzel. 2010. Coupling governs
entrainment range of circadian clocks. Mol. Syst. Biol. 6:438.

19. Herrgen, L., S. Ares, ., A. C. Oates. 2010. Intercellular coupling reg-
ulates the period of the segmentation clock. Curr. Biol. 20:1244–1253.

20. Jonkers, F. C., J. C. Jonas, ., J. C. Henquin. 1999. Influence of cell
number on the characteristics and synchrony of Ca2þ oscillations in
clusters of mouse pancreatic islet cells. J. Physiol. 520:839–849.

21. Gregor, T., K. Fujimoto, ., S. Sawai. 2010. The onset of collective
behavior in social amoebae. Science. 328:1021–1025.
Biophysical Journal 106(9) 2071–2081
22. Mohawk, J. A., C. B. Green, and J. S. Takahashi. 2012. Central and
peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:
445–462.

23. Kim, J. K., and D. B. Forger. 2012. A mechanism for robust circadian
timekeeping via stoichiometric balance. Mol. Syst. Biol. 8:630.

24. Lee, Y., R. Chen, ., C. Lee. 2011. Stoichiometric relationship among
clock proteins determines robustness of circadian rhythms. J. Biol.
Chem. 286:7033–7042.

25. Cho, H., X. Zhao, ., R. M. Evans. 2012. Regulation of circadian
behavior and metabolism by REV-ERB-a and REV-ERB-b. Nature.
485:123–127.

26. Menet, J. S., K. C. Abruzzi, ., M. Rosbash. 2010. Dynamic PER
repression mechanisms in the Drosophila circadian clock: from on-
DNA to off-DNA. Genes Dev. 24:358–367.

27. Ye, R., C. P. Selby, ., A. Sancar. 2011. Biochemical analysis of the
canonical model for the mammalian circadian clock. J. Biol. Chem.
286:25891–25902.

28. Reference deleted in proof.

29. Chen, R., A. Schirmer,., C. Lee. 2009. Rhythmic PER abundance de-
fines a critical nodal point for negative feedback within the circadian
clock mechanism. Mol. Cell. 36:417–430.

30. Huang, G., S. Chen, ., Y. Liu. 2007. Protein kinase A and casein ki-
nases mediate sequential phosphorylation events in the circadian nega-
tive feedback loop. Genes Dev. 21:3283–3295.

31. Johnson, C. H., P. L. Stewart, and M. Egli. 2011. The cyanobacterial
circadian system: from biophysics to bioevolution. Annu. Rev. Biophys.
40:143–167.

32. Novák, B., and J. J. Tyson. 2008. Design principles of biochemical
oscillators. Nat. Rev. Mol. Cell Biol. 9:981–991.

33. Gonze, D., and W. Abou-Jaoudé. 2013. The Goodwin model: behind
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