78 research outputs found

    Lesions of the Basolateral Amygdala Disrupt Conditioning Based on the Retrieved Representations of Motivationally Significant Events

    Get PDF
    This predicts that lesions of the BLA will not produce a decrement in performance in conditioning procedures based on the formation of associations between the sensory aspects of neutral events but will interfere with conditioning based on associations between neutral cues and motivationally significant events. This prediction is supported by the evidence that BLA lesions were without effect on a sensory preconditioning procedure (experiment 1A) that used neutral cues but that BLA lesions did significantly impair representation-mediated conditioning (experiment 1B) when the target cues were motivationally significant at the time of training. These results demonstrate that animals with lesions of the BLA can represent the sensory aspects of neutral events but not the sensory aspects of motivationally significant events

    Prefrontal cortex lesions disrupt the contextual control of response conflict

    Get PDF
    The prefrontal cortex has been implicated in multiple forms of goal-directed behavior. Rats with pretraining lesions to the prefrontal cortex (PFC) or specific lesions to the anterior cingulate cortex (ACC) were trained and tested on a novel behavioral procedure measuring aspects of cue and response competition typical of tests of prefrontal function in humans. Rats were trained on two biconditional discrimination tasks, one auditory and one visual, in two discriminably different contexts. At test, they received presentations of audiovisual compounds of these training stimuli in both contexts, in extinction. These compounds were formed in such way that the individual elements had dictated either the same (congruent trials) or different (incongruent trials) responses during training. Sham-operated rats used the contextual cues to disambiguate the conflicting response information provided by incongruent stimulus compounds. ACC lesions impaired the contextual control of instrumental responding during incongruent cues during only the initial period of cue presentation, whereas larger PFC lesions abolished incongruent cue performance completely. Neither biconditional discrimination acquisition, nor test performance during congruent stimulus compounds, were affected by the lesions. These findings are consistent with human and nonhuman primate studies, indicating a role for the PFC in the processes by which cues come to control behavior in the face of conflicting information and the ACC specifically in processes such as detection of response conflict. This procedure provides a good foundation for an improved understanding of the disruption to goal-directed behavior seen with frontal dysfunction in a number of neuropsychological disorders including schizophrenia

    Lesions of the basolateral amygdala disrupt conditioning based on the retrieved representations of motivationally significant events

    Get PDF
    One recent perspective (Blundell et al., 2001; 2003; Killcross and Blundell, 2002; Balleine et al. 2003) on the function of the basolateral region of the amygdala (BLA) suggests that it plays an important role in the representation of the sensory features of motivationally significant events. This predicts that lesions of the BLA will not produce a decrement in performance in conditioning procedures based on the formation of associations between the sensory aspects of neutral events but will interfere with conditioning based on associations between neutral cues and motivationally significant events. This prediction is supported by the evidence that BLA lesions were without effect on a sensory preconditioning procedure (experiment 1A) that used neutral cues but that BLA lesions did significantly impair representation-mediated conditioning (experiment 1B) when the target cues were motivationally significant at the time of training. These results demonstrate that animals with lesions of the BLA can represent the sensory aspects of neutral events but not the sensory aspects of motivationally significant events

    Amphetamine exposure enhances habit formation

    Get PDF
    Performance of instrumental actions in rats is initially sensitive to postconditioning changes in reward value, but after more extended training, behavior comes to be controlled by stimulus–response (S-R) habits that are no longer goal directed. To examine whether sensitization of dopaminergic systems leads to a more rapid transition from action–outcome processes to S-R habits, we examined performance of amphetamine-sensitized rats in an instrumental devaluation task. Animals were either sensitized (7 d, 2 mg/kg/d) before training (experiment 1) or sensitized between training and testing (experiment 2). Rats were trained to press a lever for a reward (three sessions) and were then given a test of goal sensitivity by devaluation of the instrumental outcome before testing in extinction. Control animals showed selective sensitivity to devaluation of the instrumental outcome. However, amphetamine sensitization administered before training caused the animals’ responding to persist despite the changed value of the reinforcer. This deficit resulted from an inability to use representations of the outcome to guide behavior, because a reacquisition test confirmed that all of the animals had acquired an aversion to the reinforcer. In experiment 2, post-training sensitization did not disrupt normal goal-directed behavior. These findings indicate that amphetamine sensitization leads to a rapid progression from goal-directed to habit-based responding but does not affect the performance of established goal-directed actions

    Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats

    Get PDF
    The amygdala is known to play a role in learning about motivationally significant events. We investigated this role further by examining the effects of excitotoxic lesions of the basolateral amygdala on the ability of rats to use instrumental outcomes to direct responding (the differential outcomes effect) and on the ability of Pavlovian cues to modulate instrumental performance based on shared outcomes (reinforcer–selective Pavlovian-to-instrumental transfer). We found that basolateral amygdala (BLA) lesions did not affect the ability of rats to learn a basic instrumental conditional discrimination, but did disrupt the ability of differential outcomes to facilitate acquisition. In Pavlovian-to-instrumental transfer, BLA lesions did not disrupt the basic enhancement of instrumental performance but did abolish the reinforcer specificity of that enhancement. These results suggest that the BLA is involved in the representation of the sensory aspects of motivationally significant events

    Competing contextual processes rely on the infralimbic and prelimbic medial prefrontal cortices in the rat

    Get PDF
    Ambiguous relationships between events may be established using interference procedures such as latent inhibition, extinction or counterconditioning. Under these conditions, the retrieval of individual associations between a stimulus and outcome is affected by contextual cues. To examine the roles of the dorsal (prelimbic) and ventral (infralimbic) medial prefrontal cortex in the contextual modulation of such associations, we investigated the context specificity of latent inhibition. Male Lister hooded rats were pre-exposed to two separate stimuli, one in each of two distinct contexts. Both stimuli were then paired with the delivery of mild foot-shock in the same one of these contexts. Finally, the strength of the resultant conditioned emotional response (CER) to each stimulus was assessed in each context. For the sham-operated control rats, the CER was attenuated for each stimulus when it was tested in the context in which it had been pre-exposed. Rats who had received lesions to the infralimbic cortex showed this effect only in the conditioning context, whereas rats with lesions to the prelimbic cortex showed the effect only in the context in which conditioning had not taken place. These findings indicate that infralimbic and prelimbic cortices play distinct, and competing, roles in the contextual modulation of initial and later learning

    Tourette-like behaviors in the normal population are associated with hyperactive/impulsive ADHD-like behaviors but do not relate to deficits in conditioned inhibition or response inhibition

    Get PDF
    Attention-Deficit Hyperactivity Disorder (ADHD) and Tourette Syndrome (TS) present as distinct conditions clinically; however, comorbidity and inhibitory control deficits have been proposed for both. Whilst such deficits have been studied widely within clinical populations, findings are mixed — partly due to comorbidity and/or medication effects — and studies have rarely distinguished between subtypes of the disorders. Studies in the general population are sparse. Using a continuity approach, the present study examined (i) the relationships between inattentive and hyperactive/impulsive aspects of ADHD and TS-like behaviors in the general population, and (ii) their unique associations with automatic and executive inhibitory control, as well as (iii) yawning (a proposed behavioural model of TS). One hundred and thirty-eight participants completed self-report measures for ADHD and TS-like behaviors as well as yawning, and aconditioned inhibition task to assess automatic inhibition

    Speed/Accuracy Trade-Off between the Habitual and the Goal-Directed Processes

    Get PDF
    Instrumental responses are hypothesized to be of two kinds: habitual and goal-directed, mediated by the sensorimotor and the associative cortico-basal ganglia circuits, respectively. The existence of the two heterogeneous associative learning mechanisms can be hypothesized to arise from the comparative advantages that they have at different stages of learning. In this paper, we assume that the goal-directed system is behaviourally flexible, but slow in choice selection. The habitual system, in contrast, is fast in responding, but inflexible in adapting its behavioural strategy to new conditions. Based on these assumptions and using the computational theory of reinforcement learning, we propose a normative model for arbitration between the two processes that makes an approximately optimal balance between search-time and accuracy in decision making. Behaviourally, the model can explain experimental evidence on behavioural sensitivity to outcome at the early stages of learning, but insensitivity at the later stages. It also explains that when two choices with equal incentive values are available concurrently, the behaviour remains outcome-sensitive, even after extensive training. Moreover, the model can explain choice reaction time variations during the course of learning, as well as the experimental observation that as the number of choices increases, the reaction time also increases. Neurobiologically, by assuming that phasic and tonic activities of midbrain dopamine neurons carry the reward prediction error and the average reward signals used by the model, respectively, the model predicts that whereas phasic dopamine indirectly affects behaviour through reinforcing stimulus-response associations, tonic dopamine can directly affect behaviour through manipulating the competition between the habitual and the goal-directed systems and thus, affect reaction time

    Reinforcement and punishment: Dissociable systems for action and emotion?

    No full text

    Loss of Hierarchical Control by Occasion Setters Following Lesions of the Prelimbic and Infralimbic Medial Prefrontal Cortex in Rats

    No full text
    Recent work suggests complementary roles of the prelimbic and infralimbic regions of the rat medial prefrontal cortex in cognitive control processes, with the prelimbic cortex implicated in top-down modulation of associations and the infralimbic cortex playing a role in the inhibition of inappropriate responses. Following selective lesions made to prelimbic or infralimbic regions (or control sham-surgery) rats received simultaneous training on Pavlovian feature negative (A+, XA−) and feature positive (B−, YB+) discriminations designed to lead to hierarchical occasion-setting control by the features (X, Y) over their respective targets (A, B). Evidence for hierarchical control was assessed in a transfer test in which features and targets were swapped (YA, XB). All groups were able to learn the feature negative and feature positive discriminations. Whilst sham-lesioned animals showed no transfer of control by features to novel targets (a hallmark of hierarchical control), rats with lesions of prelimbic or infralimbic regions showed evidence of transfer from the positive feature (Y) to the negative target (A), and from the negative feature (X) to the positive target (B; although this only achieved significance in infralimbic-lesioned animals). These data indicate that damage to either of these regions disrupts hierarchical occasion-setting control, extending our knowledge of their role in cognitive control to encompass flexible behaviours dictated by discrete cues
    • …
    corecore