184 research outputs found

    Quantum Teleportation Using Quantum Non-Demolition Technique

    Get PDF
    We propose a new scheme and protocol for quantum teleportation of a single-mode field state, based on entanglement produced by quantum non-demolition interaction. We show that the recently attained results in QND technique allow to perform the teleportation in quantum regime. We also show that applying QND coupling to squeezed fields will significantly improve the quality of teleportation for a given degree of squeezing.Comment: 4 pages RevTeX, 2 figure

    Nonlinear coherent loss for generating non-classical states

    Full text link
    Here we discuss generation of non-classical states of bosonic mode with the help of artificially designed loss, namely the nonlinear coherent loss. We show how to generate superpositions of Fock states, and how it is possible to "comb" the initial states leaving only states with certain properties in the resulting superposition (for example, a generation of a superposition of Fock states with odd number of particles). We discuss purity of generated states and estimate maximal achievable generation fidelity

    Afterpulsing model based on the quasi-continuous distribution of deep levels in single-photon avalanche diodes

    Full text link
    We have performed a statistical characterization of the effect of afterpulsing in a free-running silicon single-photon detector by measuring the distribution of afterpulse waiting times in response to pulsed illumination and fitting it by a sum of exponentials. We show that a high degree of goodness of fit can be obtained for 5 exponentials, but the physical meaning of estimated characteristic times is dubious. We show that a continuous limit of the sum of exponentials with a uniform density between the limiting times gives excellent fitting results in the full range of the detector response function. This means that in certain detectors the afterpulsing is caused by a continuous band of deep levels in the active area of the photodetector.Comment: 10 pages, 4 figure

    Quantum tight-binding chains with dissipative coupling

    Get PDF
    We present a one-dimensional tight-binding chain of two-level systems coupled only through common dissipative Markovian reservoirs. This quantum chain can demonstrate anomalous thermodynamic behavior contradicting Fourier law. Population dynamics of individual systems of the chain is polynomial with the order determined by the initial state of the chain. The chain can simulate classically hard problems, such as multi-dimensional random walks

    Measuring photon-photon interactions via photon detection

    Full text link
    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found that the detected mean-photon number versus pump-field frequency shows several peaks. Interestingly, the interval between neighbour peaks equals the photon-photon interaction potential. Furthermore, the system exhibits sub-Poissonian photon statistics, entanglement and photon switching with less than one photon. Finally, we connect our study with existing related experiments.Comment: 4 pages, 3 figure

    Driving-dependent damping of Rabi oscillations in two-level semiconductor systems

    Full text link
    We propose a mechanism to explain the nature of the damping of Rabi oscillations with increasing driving-pulse area in localized semiconductor systems, and have suggested a general approach which describes a coherently driven two-level system interacting with a dephasing reservoir. Present calculations show that the non-Markovian character of the reservoir leads to the dependence of the dephasing rate on the driving-field intensity, as observed experimentally. Moreover, we have shown that the damping of Rabi oscillations might occur as a result of different dephasing mechanisms for both stationary and non-stationary effects due to coupling to the environment. Present calculated results are found in quite good agreement with available experimental measurements

    Optimal dimensionality for quantum cryptography

    Get PDF
    We perform a comparison of two protocols for generating a cryptographic key composed from d-valued symbols: one exploiting a string of independent qubits and another one utilizing d-level systems prepared in states belonging to d+1 mutually unbiased bases. We show that the protocol based on qubits is optimal for quantum cryptography, since it provides higher security and higher key generation rate.Comment: Revtex, 4 pages, 1 eps figur

    Quantum state engineering via unitary transformations

    Get PDF
    We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field. The proposition is based upon the fact that a unitary transformation for the generation of number states has been already found. The general unitary transformation here obtained, would allow the use of nonlinear interactions for the production of pure states. We discuss the applicability of this method by giving examples of generation of simple superposition states. We also compare our Hamiltonian with the one resulting from the interaction of trapped ions with two laser fields.Comment: 5 pages in RevTeX, no figures, accepted for publication in Phys. Rev.

    Field-emitter bound states in structured thermal reservoirs

    Get PDF
    We derive a master equation for a two-level emitter interacting with a band-gap reservoir at finite temperatures. This equation is able to capture effects of emitter-reservoir entanglement. We show that the entangled field-emitter bound state, which arises in the process of interaction, does not survive indefinitely at finite temperatures. However, such an entangled state may be effectively excited through an intensive incoherent driving.75
    • …
    corecore