1,586 research outputs found

    SDSS J163030.58+423305.8: A 40 minute Orbital Period Detached White Dwarf Binary

    Full text link
    We report the discovery of a new detached, double white dwarf system with an orbital period of 39.8 min. We targeted SDSS J163030.58+423305.8 (hereafter J1630) as part of our radial velocity program to search for companions around low-mass white dwarfs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 576 km/s. The mass function and optical photometry rule out main-sequence companions. In addition, no milli-second pulsar companions are detected in radio observations. Thus the invisible companion is most likely another white dwarf. Unlike the other 39 min binary SDSS J010657.39-100003.3, follow-up high speed photometric observations of J1630 obtained at the McDonald 2.1m telescope do not show significant ellipsoidal variations, indicating a higher primary mass and smaller radius. The absence of eclipses constrain the inclination angle to <82deg. J1630 contains a pair of white dwarfs, 0.3 Msun primary + >0.3 Msun invisible secondary, at a separation of >0.32 Rsun. The two white dwarfs will merge in less than 31 Myr. Depending on the core composition of the companion, the merger will form either a single core-He burning subdwarf star or a rapidly rotating massive white dwarf. The gravitational wave strain from J1630 is detectable by instruments like the Laser Interferometer Space Antenna (LISA) within the first year of operation.Comment: MNRAS Letters, in pres

    Interference in Cellular Satellite Systems

    Get PDF

    The Shortest Period Detached Binary White Dwarf System

    Full text link
    We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest period detached binary white dwarf (WD) system currently known. We targeted J0106-1000 as part of our radial velocity program to search for companions around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 740 km/s with an orbital period of 39.1 min. The mass function and optical photometry rule out a main-sequence star companion. Follow-up high-speed photometric observations obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the distorted primary but no eclipses. This is the first example of a tidally distorted WD. Modeling the lightcurve, we constrain the inclination angle of the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf star. J0106-1000 is the shortest timescale merger system currently known. The gravitational wave strain from J0106-1000 is at the detection limit of the Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and orbital period measurements may enable LISA to detect J0106-1000 above the Galactic background noise.Comment: MNRAS Letters, in pres

    Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp.

    Get PDF
    The effect of increased concentrations of potassium bicarbonate (KHCO3) as a possible alternative to synthetic fungicides for controlling Rhizoctonia solani AG 4 HG-I and Sclerotinia sclerotiorum was evaluated in vitro, in this study. In addition, the effect of potassium bicarbonate on Trichoderma sp., a natural antagonist on R. solani AG 4 HG-I and S. sclerotiorum was determined. Potassium bicarbonate substantially inhibited (P&lt;0.05) the growth of the three fungal strains. Mycelial growth of R. solani AG 4 HG-I significantly decreased as the concentration of bicarbonate increased, especially at concentrations greater than 200 mM. Similarly, mycelial growth of both S. sclerotiorum and Trichoderma sp. dramatically reduced in increasing concentrations of KHCO3. Mycelial growth of either fungi was completely inhibited when exposed to 100 mM bicarbonate. In addition, KHCO3 concentrations higher than 10 mM caused significant (P&lt;0.05) reduction of the sclerotium formation of S. sclerotiorum. Also, sclerotium germination and de novo sclerotium formation were significantly inhibited as the concentrations of KHCO3 increased. As a result, it was concluded that potassium bicarbonate was an alternative chemical agent for  controlling R. solani AG 4 HG-I and S. sclerotiorum. Also, KHCO3 was found to have negative effects on Trichoderma sp.Key words: Antifungal effect, KHCO3, soil borne pathogens, sclerotium germination

    Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells

    Get PDF
    Nanoscale extracellular vesicles (EVs) including exosomes (50–150 nm membrane particles) have emerged as promising cancer biomarkers due to the carried genetic information about the parental cells. However the sensitive detection of these vesicles remains a challenge. Here we present a label-free electrochemical sensor to measure the EVs secretion levels of hypoxic and normoxic MCF-7 cells. The sensor design includes two consecutive steps; i) Au electrode surface functionalization for anti-CD81 Antibody and ii) EVs capture. The label-free detection of EVs was done via Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). The working linear range for the sensor was 102–109 EVs/ml with an LOD 77 EVs/mL and 379 EVs/ml for EIS and DPV based detection. A blood-abundant protein, RhD was used for the selectivity test. In order to assess the performance of the biosensor, the level of EVs secretion by the human breast cancer MCF-7 cell line was compared with enzyme-linked immunosorbent assays (ELISA) and Nanoparticle Tracking Analysis (NTA). Designed label-free electrochemical sensors utilized for quantification of EVs secretion enhancement due to CoCl2-induced hypoxia and 1.23 fold increase with respect to normoxic conditions was found

    Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain

    Full text link
    Protein kinases and phosphatases can alter the impact of excitotoxicity resulting from ischemia by concurrently modulating apoptotic/survival pathways. Here, we show that protein phosphatase 1 (PP1), known to constrain neuronal signaling and synaptic strength (Mansuy et al., 1998; Morishita et al., 2001), critically regulates neuroprotective pathways in the adult brain. When PP1 is inhibited pharmacologically or genetically, recovery from oxygen/glucose deprivation (OGD) in vitro, or ischemia in vivo is impaired. Furthermore, in vitro, inducing LTP shortly before OGD similarly impairs recovery, an effect that correlates with strong PP1 inhibition. Conversely, inducing LTD before OGD elicits full recovery by preserving PP1 activity, an effect that is abolished by PP1 inhibition. The mechanisms of action of PP1 appear to be coupled with several components of apoptotic pathways, in particular ERK1/2 (extracellular signal-regulated kinase 1/2) whose activation is increased by PP1 inhibition both in vitro and in vivo. Together, these results reveal that the mechanisms of recovery in the adult brain critically involve PP1, and highlight a novel physiological function for long-term potentiation and long-term depression in the control of brain damage and repair

    Pulsed Beam Tests at the SANAEM RFQ Beamline

    Full text link
    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority's (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.Comment: 6 pages, 6 figures. Proceedings of the International Particle Accelerator Conference 2017 (IPAC'17), May 14-19, 2017, TUPAB015, p. 134

    The Shortest Period Detached Binary White Dwarf System

    Full text link
    We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest period detached binary white dwarf (WD) system currently known. We targeted J0106-1000 as part of our radial velocity program to search for companions around known extremely low-mass (ELM, ~ 0.2 Msol) WDs using the 6.5m MMT. We detect peak-to-peak radial velocity variations of 740 km/s with an orbital period of 39.1 min. The mass function and optical photometry rule out a main-sequence star companion. Follow-up high-speed photometric observations obtained at the McDonald 2.1m telescope reveal ellipsoidal variations from the distorted primary but no eclipses. This is the first example of a tidally distorted WD. Modeling the lightcurve, we constrain the inclination angle of the system to be 67 +- 13 deg. J0106-1000 contains a pair of WDs (0.17 Msol primary + 0.43 Msol invisible secondary) at a separation of 0.32 Rsol. The two WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf star. J0106-1000 is the shortest timescale merger system currently known. The gravitational wave strain from J0106-1000 is at the detection limit of the Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and orbital period measurements may enable LISA to detect J0106-1000 above the Galactic background noise.Comment: MNRAS Letters, in pres
    • …
    corecore