765 research outputs found

    Halothane hepatitis with renal failure treated with hemodialysis and exchange transfusion

    Get PDF
    A 38-year-old white female, hepatitis B antigen negative, developed fluminating hepatic failure associated with oliguria and severe azotemia after two halothane anesthesia and without exposure to other hepatotoxic drugs or blood transfusions. She was treated with multiple hemodialysis and exchange blood transfusion. The combined treatment corrected the uremic abnormalities and improved her level of consciousness. The liver and kidney function gradually improved, and she made a complete recovery, the first recorded with hepatic and renal failure under these post-anesthetic conditions. Further evaluation of this combined treatment used for this patient is warranted. Ā© 1974 The Japan Surgical Society

    The Job Search Intensity Supply Curve: How Labor Market Conditions Affect Job Search Effort

    Get PDF
    During the Great Recession of 2007, unemployment reached nearly 10 percent and the ratio of unemployment to open positions (as measured by the Help Wanted OnLine Index) more than tripled. The weak labor market prompted an unprecedented extension in the length of time in which a claimant can collect unemployment insurance (UI) to 99 weeks, at an expense to date of $226.4 billion. While many claim that extending UI during a recession will reduce search intensity, the effect of weak labor market conditions on search remains a mystery. As a result, policymakers are in the dark as to whether UI extensions reduce already low search effort during recessions or perhaps decrease excessive search, which causes congestion in the labor market. At the same time, modelers of the labor market have little empirical justification for their assumptions on how search intensity changes over the business cycle. This paper develops a search model where the impact of macro labor market conditions on a workerā€™s search effort depends on whether these two factors are substitutes or complements in the job search process. Parameter estimates of the structural model using a sample of unemployment spells from the National Longitudinal Survey of Youth 1997 indicate that macro labor market conditions and individual search effort are complements and move together over the business cycle. The estimation also reveals that more risk-averse and less wealthy individuals exhibit less search effort

    Bulk Axions, Brane Back-reaction and Fluxes

    Full text link
    Extra-dimensional models can involve bulk pseudo-Goldstone bosons (pGBs) whose shift symmetry is explicitly broken only by physics localized on branes. Reliable calculation of their low-energy potential is often difficult because it requires details of the stabilization of the extra dimensions. In rugby ball solutions, for which two compact extra dimensions are stabilized in the presence of only positive-tension brane sources, the effects of brane back-reaction can be computed explicitly. This allows the calculation of the shape of the low-energy pGB potential and response of the extra dimensional geometry as a function of the perturbing brane properties. If the pGB-dependence is a small part of the total brane tension a very general analysis is possible, permitting an exploration of how the system responds to frustration when the two branes disagree on what the proper scalar vacuum should be. We show how the low-energy potential is given by the sum of brane tensions (in agreement with common lore) when only the brane tensions couple to the pGB. We also show how a direct brane coupling to the flux stabilizing the extra dimensions corrects this result in a way that does not simply amount to the contribution of the flux to the brane tensions. We calculate the mass of the would-be zero mode, and briefly describe several potential applications, including a brane realization of `natural inflation,' and a dynamical mechanism for suppressing the couplings of the pGB to matter localized on the branes. Since the scalar can be light enough to be relevant to precision tests of gravity (in a technically natural way) this mechanism can be relevant to evading phenomenological bounds.Comment: 36 pages, JHEP styl

    Phosphorylated DegU Manipulates Cell Fate Differentiation in the <i>Bacillus subtilis</i> Biofilm<em/>

    Get PDF
    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegUāˆ¼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegUāˆ¼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegUāˆ¼P functions to increase the level of Spo0Aāˆ¼P, driving cell fate differentiation toward the terminal developmental process of sporulation

    Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Get PDF
    BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis

    Protein kinase Cepsilon is important for migration of neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility.</p> <p>Methods</p> <p>PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot.</p> <p>Results</p> <p>Stimulation with 12-<it>O</it>-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gƶ6976 inhibited migration while an inhibitor of PKCĪ² isoforms did not have an effect. Downregulation of PKCĪµ, but not of PKCĪ± or PKCĪ“, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCĪµ. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS.</p> <p>Conclusion</p> <p>PKCĪµ is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCĪµ but they may be involved in TPA-mediated migration.</p
    • ā€¦
    corecore