147 research outputs found
Influence of Rotation on Pulsar Radiation Characteristics
We present a relativistic model for pulsar radio emission by including the
effect of rotation on coherent curvature radiation by bunches. We find that
rotation broadens the width of leading component compared to the width of
trailing component. We estimate the component widths in the average pulse
profiles of about 24 pulsars, and find that 19 of them have a broader leading
component. We explain this difference in the component widths by using the
nested cone emission geometry.
We estimate the effect of pulsar spin on the Stokes parameters, and find that
the inclination between the rotation and magnetic axes can introduce an
asymmetry in the circular polarization of the conal components. We analyze the
single pulse polarization data of PSR B0329+54 at 606 MHz, and find that in its
conal components, one sense of circular polarization dominates in the leading
component while the other sense dominates in the trailing component. Our
simulation shows that changing the sign of the impact parameter changes the
sense of circular polarization as well as the swing of polarization angle.Comment: 20 pages, 4 Postscript figures, uses aastex.cls. Accepted for
Publication in ApJ 200
Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells
APOBEC-mediated cytidine cleamination of HIV-1 genomes during reverse transcription has been shown to be a potent mechanism of host restriction for HIV-1 infection ex vivo and in vitro. However, this defense system can be overcome by the viral protein Vif. Unlike other mechanisms of host restriction, the APOCEC-Vif interaction leaves an imprint on integrated proviruses in the form of G-A hypermutation. in the current work we systematically studied levels, contexts, and patterns of HIV-1 hypermutation in vivo. the analysis of 24 full-genome HIV-1 sequences retrieved from primary PBMCs, representing infections with several HIV-1 clades, and the inclusion of 7 cognate pairs of hypermutated/non-hypermutated sequences derived from the same patient sample, provided a comprehensive view of the characteristics of APOBEC-mediated restriction in vivo. Levels of hypermutation varied nearly 5-fold among the studied proviruses. GpG motifs were most frequently affected (22/24 proviruses). Levels of hypermutation varied across the genome. the reported twin peak pattern of hypermutation was observed in 18/24 hypermutants, but the remainder exhibited singular non-conforming patterns. These data suggest considerable complexity in the interplay of host restriction and viral defense during HIV-1 infection. (c) 2008 Elsevier Inc. All rights reserved.Henry M Jackson Fdn Advancement Mil Med, US Mil HIV Res Program, Rockville, MD 20850 USAUniversidade Federal de SĂŁo Paulo, Paulista Sch Med, Div Infect Dis, BR-04039 SĂŁo Paulo, BrazilWalter Reed Army Inst Res, Div Retrovirol, Rockville, MD 20850 USAUniversidade Federal de SĂŁo Paulo, Paulista Sch Med, Div Infect Dis, BR-04039 SĂŁo Paulo, BrazilWeb of Scienc
The bright unidentified gamma-ray source 1FGL J1227.9-4852: Can it be associated with an LMXB?
We present an analysis of high energy (HE; 0.1-300 GeV) gamma-ray
observations of 1FGL J1227.9-4852 with the Fermi Gamma-ray Space Telescope,
follow-up radio observations with the Australia Telescope Compact Array, Giant
Metrewave Radio Telescope and Parkes radio telescopes of the same field and
follow-up optical observations with the ESO VLT. We also examine archival
XMM-Newton and INTEGRAL X-ray observations of the region around this source.
The gamma-ray spectrum of 1FGL J1227.9-4852 is best fit with an exponentially
cutoff power-law, reminiscent of the population of pulsars observed by Fermi. A
previously unknown, compact radio source within the 99.7% error circle of 1FGL
J1227.9-4852 is discovered and has a morphology consistent either with an AGN
core/jet structure or with two roughly symmetric lobes of a distant radio
galaxy. A single bright X-ray source XSS J12270-4859, a low-mass X-ray binary,
also lies within the 1FGL J1227.9-4852 error circle and we report the first
detection of radio emission from this source. The potential association of 1FGL
J1227.9-4852 with each of these counterparts is discussed. Based upon the
available data we find the association of the gamma-ray source to the compact
double radio source unlikely and suggest that XSS J12270-4859 is a more likely
counterpart to the new HE source. We propose that XSS J12270-4859 may be a
millisecond binary pulsar and draw comparisons with PSR J1023+0038.Comment: Accepted for publication in MNRAS; 9 pages, 8 figures, 2 table
An Empirical Model for the Radio Emission from Pulsars
A model for slow radio pulsars is proposed which involves the entire
magnetosphere in the production of the observed radio emission. It is argued
that observations of pulsar profiles suggest that a feedback mechanism exists
between the star surface and the null charge surface, requiring particle flow
in both directions. In their flow to and from the surface the particles execute
an azimuthal drift around the magnetic pole, thereby creating a ring of
discrete `emission nodes' close to the surface. Motion of the nodes is observed
as the well-known subpulse `drift', but is interpreted here as a small residual
component of the real particle drift. The nodes can therefore move in either
direction, or even remain stationary. A precise fit is found for the pulsar
PSR0943+10. Azimuthal interactions between different regions of the
magnetosphere depend on the angle between the magnetic and rotation axes and
influence the conal type, as observed. The requirement of intermittent weak
pair-production in an outergap suggests a natural evolutionary link between
radio and gamma-ray pulsars.Comment: 17 pages 8 figure
The spark-associated soliton model for pulsar radio emission
We propose a new, self-consistent theory of coherent pulsar radio emission
based on the non-stationary sparking model of Ruderman & Sutherland (1975),
modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these
authors, the polar cap is populated as densely as possible by a number of
sparks with a characteristic perpendicular dimension D approximately equal to
the polar gap height scale h, separated from each other also by about h. Each
spark reappears in approximately the same place on the polar cap for a time
scale much longer than its life-time and delivers to the open magnetosphere a
sequence of electron-positron clouds which flow orderly along a flux tube of
dipolar magnetic field lines. The overlapping of particles with different
momenta from consecutive clouds leads to effective two-stream instability,
which triggers electrostatic Langmuir waves at the altitudes of about 50
stellar radii. The electrostatic oscillations are modulationally unstable and
their nonlinear evolution results in formation of ``bunch-like'' charged
solitons. A characteristic soliton length along magnetic field lines is about
30 cm, so they are capable of emitting coherent curvature radiation at radio
wavelengths. The net soliton charge is about 10^21 fundamental charges,
contained within a volume of about 10^14 cm^3. For a typical pulsar, there are
about 10^5 solitons associated with each of about 25 sparks operating on the
polar cap at any instant. One soliton moving relativisticaly along dipolar
field lines with a Lorentz factor of the order of 100 generates a power of
about 10^21 erg/s by means of curvature radiation. Then the total power of a
typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap
HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies
HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base
The characteristics of millisecond pulsar emission: I. Spectra, pulse shapes and the beaming fraction
We have monitored a large sample of millisecond pulsars using the 100-m
Effelsberg radio telescope in order to compare their radio emission properties
to the slowly rotating population. With some notable exceptions, our findings
suggest that the two groups of objects share many common properties. A
comparison of the spectral indices between samples of normal and millisecond
pulsars demonstrates that millisecond pulsar spectra are not significantly
different from those of normal pulsars. There is evidence, however, that
millisecond pulsars are slightly less luminous and less efficient radio
emitters compared to normal pulsars. We confirm recent suggestions that a
diversity exists among the luminosities of millisecond pulsars with the
isolated millisecond pulsars being less luminous than the binary millisecond
pulsars. There are indications that old millisecond pulsars exhibit somewhat
flatter spectra than the presumably younger ones. We present evidence that
millisecond pulsar profiles are only marginally more complex than those found
among the normal pulsar population. Moreover, the development of the profiles
with frequency is rather slow, suggesting very compact magnetospheres. The
profile development seems to anti-correlate with the companion mass and the
spin period, again suggesting that the amount of mass transfer in a binary
system might directly influence the emission properties. The angular radius of
radio beams of millisecond pulsars does not follow the scaling predicted from a
canonical pulsar model which is applicable for normal pulsars. Instead they are
systematically smaller. The smaller inferred luminosity and narrower emission
beams will need to be considered in future calculations of the birth-rate of
the Galactic population.Comment: 40 pages, 14 figures, accepted for publication in Ap
Preferential Targeting of Conserved Gag Regions after Vaccination with a Heterologous DNA prime - Modified Vaccinia Ankara (MVA) boost HIV-1 vaccine regimen
Prime-boost vaccination strategies against HIV-1 often include multiple variants for a given immunogen for better coverage of the extensive viral diversity. To study the immunologic effects of this approach, we characterized breadth, phenotype, function and specificity of Gag-specific T cells induced by a DNA-prime Modified Vaccinia Ankara (MVA)-boost vaccination strategy, which uses mismatched Gag immunogens in the TamoVac 01 phase IIa trial. Healthy Tanzanian volunteers received three injections of the DNA-SMI vaccine encoding for a subtype B and AB-recombinant Gagp37 and two vaccinations with MVA-CMDR encoding subtype A Gagp55 Gag-specific T-cell responses were studied in 42 vaccinees using fresh peripheral blood mononuclear cells. After the first MVA-CMDR boost, vaccine-induced IFN-γ(+) Gag-specific T cell responses were dominated by CD4(+) T cells (compared to CD8(+) T cells, p<0.001) that co-expressed IL-2 (66.4%) and/or TNFα (63.7%). A median of 3 antigenic regions were targeted with a higher median response magnitude to Gagp24 regions - more conserved between prime and boost - as compared to regions within Gagp15 (not primed) and Gagp17 (less conserved, both p<0.0001). Four regions within Gagp24 were each targeted by 45% to 74% of vaccinees upon restimulation with DNA-SMI-Gag matched peptides. The response rate to individual antigenic regions correlated with the sequence homology between the MVA and DNA Gag encoded immunogens (p=0.04, r(2)=0.47). In summary, after the first MVA-CMDR boost, the sequence-mismatched DNA-prime MVA-boost vaccine strategy induced a Gag-specific T cell response that was dominated by polyfunctional CD4(+) T cells and that targeted multiple antigenic regions within the conserved Gagp24 Protein.IMPORTANCE Genetic diversity is a major challenge for the design of vaccines against variable viruses. While including multiple variants for a given immunogen in prime-boost vaccination strategies is one approach that aims to improve coverage for global virus variants, the immunologic consequences of this strategy have been poorly defined so far. It is unclear whether inclusion of multiple variants in prime-boost vaccination strategies improves recognition of variant viruses by T cells and by which mechanisms this would be achieved; either by improved cross-recogniton of multiple variants for a given antigenic region or rather through preferential targeting of antigenic regions more conserved between prime and boost. Engineering vaccines to induce adaptive immune responses that preferentially target conserved antigenic regions of viral vulnerability might facilitate better immune control after preventive and therapeutic vaccination for HIV and for other variable viruses
Hierarchical Hidden Markov Model in Detecting Activities of Daily Living in Wearable Videos for Studies of Dementia
International audienceThis paper presents a method for indexing activities of daily living in videos obtained from wearable cameras. In the context of dementia diagnosis by doctors, the videos are recorded at patients' houses and later visualized by the medical practitioners. The videos may last up to two hours, therefore a tool for an efficient navigation in terms of activities of interest is crucial for the doctors. The specific recording mode provides video data which are really difficult, being a single sequence shot where strong motion and sharp lighting changes often appear. Our work introduces an automatic motion based segmentation of the video and a video structuring approach in terms of activities by a hierarchical two-level Hidden Markov Model. We define our description space over motion and visual characteristics of video and audio channels. Experiments on real data obtained from the recording at home of several patients show the difficulty of the task and the promising results of our approach
- âŠ