488 research outputs found
Compliance with EU air quality limit values - A first set of sensitivity and optimization analyses
This report provides additional information to the baseline and optimized scenarios that have been developed for the review and revision of the Thematic Strategy on Air Pollution in TSAP Reports #6 and #7.
The report examines the implications of different assumptions on the implementation of the Euro-6 emission standards for light duty diesel vehicles on compliance with NO2 air quality limit values in Europe. For the baseline assumptions of the TSAP-2012 baseline scenario, i.e., a decline of real-driving emission in two stages down to 1.5 times the value of test cycle value in 2018, it is estimated that almost all AIRBASE stations that have been modelled in this exercise would achieve the NO2 limit values by 2030 at the latest.
However, in the least optimistic sensitivity case, i.e., under the assumption of a failure of Euro-6 (no change in real-driving emissions compared to Euro-4), about 100 out of the 1173 AIRBASE monitoring stations would still remain in non-compliance with the limit value in 2030.
A second analysis examines the optimization results presented in TSAP Report #7 in more detail and provides, for each of the optimized scenarios, the sectors in which emission reductions would occur in the cost-optimal cases. These emission reductions will lead to lower background pollution concentrations in Europe, which will affect PM10 levels within cities. It is estimated, e.g., for the high ambition case, that in 2030 the number of stations for which non-compliance is robustly estimated will decline by about 20%. The number of stations for which compliance seems possible but not certain would fall by 30% compared to the baseline. In contrast, the optimized scenarios do not yield significant improvements in the compliance with NO2 limit values, as the series of scenarios did not consider further measures for road vehicle emissions.
Finally, an initial assessment of current and future emissions of mercury in Europe suggests for the TSAP-2012 baseline a decline of Hg emissions of 22% in 2020 and about 30% in 2030 (relative to 2005), mainly as a consequence of lower coal use in the power sector. Full implementation of the available technical emission controls, especially of certain measures to reduce PM emissions, could eliminate Hg emissions in the EU by another third, so that in 2030 the total release of Hg in the EU could be more than 50% lower than in 2005
Oligocarbonate Molecular Transporters: Oligomerization-Based Syntheses and Cell-Penetrating Studies
A new family of guanidinium-rich molecular transporters featuring a novel oligocarbonate backbone with 1,7-side chain spacing is described. Conjugates can be rapidly assembled irrespective of length in a one-step oligomerization strategy that can proceed with concomitant introduction of probes (or by analogy drugs). The new transporters exhibit excellent cellular entry as determined by flow cytometry and fluorescence microscopy, and the functionality of their drug delivery capabilities was confirmed by the delivery of the bioluminescent small molecule probe luciferin and turnover by its intracellular target enzyme
Replacing the Draize eye test: impedance spectroscopy as a 3R method to discriminate between all GHS categories for eye irritation
Highly invasive animal based test procedures for risk assessment such as the Draize eye test are under increasing criticism due to poor transferability for the human organism and animal-welfare concerns. However, besides all efforts, the Draize eye test is still not completely replaced by alternative animal-free methods. To develop an in vitro test to identify all categories of eye irritation, we combined organotypic cornea models based on primary human cells with an electrical readout system that measures the impedance of the test models. First, we showed that employing a primary human cornea epithelial cell based model is advantageous in native marker expression to the primary human epidermal keratinocytes derived models. Secondly, by employing a non-destructive measuring system based on impedance spectroscopy, we could increase the sensitivity of the test system. Thereby, all globally harmonized systems categories of eye irritation could be identified by repeated measurements over a period of 7 days. Based on a novel prediction model we achieved an accuracy of 78% with a reproducibility of 88.9% to determine all three categories of eye irritation in one single test. This could pave the way according to the 3R principle to replace the Draize eye test
TSAP-2012 Baseline: Health and environmental impacts
This report examines the health and environmental impacts of the TSAP-2012 baseline emission scenarios that have been presented in the TSAP Report #1 to the Stakeholder Expert Group in June 2012. The baseline suggests for the next decades a steady decline of energy-related emissions from industry, households and transport while no significant changes are foreseen for NH3 from agricultural activities.
These emission trajectories will lead to significant improvements in air quality. For instance, loss of statistical life expectancy from exposure to fine particulate matter (PM2.5) is expected to decline from 9.6 months in 2000 and 6.9 months in 2010 to 5.5 months in 2020 and 5.0 months in 2030. It is estimated that the number of premature deaths attributable to short-term exposure of ground-level ozone will drop by about 30% by 2020. Ecosystems area where biodiversity is threatened by excess nitrogen deposition will shrink from 1.2 million km2 in 2000 to 900,000 km2 in 2030, and acidification will remain an issue at only four percent of the European forest area.
However, by 2020 the baseline improvements for fine particular matter health impacts and eutrophication will fall short of the targets established in the 2005 Thematic Strategy on Air Pollution, while for acidification and ozone these targets will be met. Furthermore, it is unlikely that the baseline development will achieve full compliance with the air quality limit values for PM10 and NO2 throughout Europe. Equally, the baseline scenario will not provide protection against excess nitrogen deposition at almost 50% of the legally protected Natura2000 areas and other protected zones.
In addition, the magnitude of air pollution impacts and resulting damage remains substantial. It is estimated that for the baseline in 2030, the European population would still suffer a loss of 210 million life-years and experience 18,000 premature deaths because of ozone exposure. Biodiversity will remain threatened by excess nitrogen input at 900,000 km2 of ecosystems, including 250,000 km2 which are legally protected, inter alia as Natura2000 areas.
The analysis also highlights the scope for additional measures that could alleviate the remaining damage and move closer to the objectives of the Sixth Environment Action Program. Full application of readily available technical emission reduction measures in the EU could reduce health impacts from PM by 2020 by another 30% and thereby gain more than 55 million life-years in the EU. It could save another 3,000 premature deaths per year because of lower ozone concentrations. Further controls of agricultural emissions could protect biodiversity at another 200,000 km2 of ecosystems against excess nitrogen deposition, including 50,000 km2 of Natura2000 areas and other protected zones. It could eliminate almost all likely exceedances of PM10 air quality limit values in the old Member States, while in the urban areas of new Member States additional action to substitute solid fuels in the household sector with cleaner forms of energy would be required. Such Europe-wide emission controls would also eliminate in 2030 all likely cases of noncompliance with EU air quality standards for NO2 with the exception of a few stations for which additional local measures (e.g., traffic restrictions, low emission zones) would be necessary.
While the general trend appears to be robust, quantification of the remaining effects requires more uncertainty analyses
Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: new cases and review of literature
Genomic AZFb deletions in Yq11 coined âclassicalâ (i.e. length of Y DNA deletion: 6.23 Mb) are associated with meiotic arrest (MA) of patient spermatogenesis, i.e., absence of any postmeiotic germ cells. These AZFb deletions are caused by non-allelic homologous recombination (NAHR) events between identical sequence blocks located in the proximal arm of the P5 palindrome and within P1.2, a 92 kb long sequence block located in the P1 palindrome structure of AZFc in Yq11. This large genomic Y region includes deletion of 6 protein encoding Y genes, EIFA1Y, HSFY, PRY, RBMY1, RPS4Y, SMCY. Additionally, one copy of CDY2 and XKRY located in the proximal P5 palindrome and one copy of BPY1, two copies of DAZ located in the P2 palindrome, and one copy of CDY1 located proximal to P1.2 are included within this AZFb microdeletion. It overlaps thus distally along 2.3 Mb with the proximal part of the genomic AZFc deletion. However, AZFb deletions have been also reported with distinct break sites in the proximal and/or distal AZFb breakpoint intervals on the Y chromosome of infertile men. These so called ânon-classicalâ AZFb deletions are associated with variable testicular pathologies, including meiotic arrest, cryptozoospermia, severe oligozoospermia, or oligoasthenoteratozoospermia (OAT syndrome), respectively. This raised the question whether there are any specific length(s) of the AZFb deletion interval along Yq11 required to cause meiotic arrest of the patientâs spermatogenesis, respectively, whether there is any single AZFb Y gene deletion also able to cause this âclassicalâ AZFb testicular pathology? Review of the literature and more cases with âclassicalâ and ânon-classicalâ AZFb deletions analysed in our lab since the last 20 years suggests that the composition of the genomic Y sequence in AZFb is variable in men with distinct Y haplogroups especially in the distal AZFb region overlapping with the proximal AZFc deletion interval and that its extension can be âpolymorphicâ in the P3 palindrome. That means this AZFb subinterval can be rearranged or deleted also on the Y chromosome of fertile men. Any AZFb deletion observed in infertile men with azoospermia should therefore be confirmed as âde novoâ mutation event, i.e., not present on the Y chromosome of the patientâs father or fertile brother before it is considered as causative agent for manâs infertility. Moreover, its molecular length in Yq11 should be comparable to that of the âclassicalâ AZFb deletion, before meiotic arrest is prognosed as the patientâs testicular pathology
Recommended from our members
The role of attachment in body weight gain and weight loss in bariatric patients
Purpose: To explore the role of attachment styles in obesity.
Material and methods: The present study explored differences in insecure attachment styles between an obese sample waiting for bariatric surgery (n=195) and an age, sex and height matched normal weight control group (n=195). It then explored the role of attachment styles in predicting change in BMI one year post bariatric surgery (n=143).
Results: The bariatric group reported significantly higher levels of anxious attachment and lower levels of avoidant attachment than the control non obese group. Baseline attachment styles did not, however, predict change in BMI post-surgery.
Conclusion: Attachment style is different in those that are already obese from those who are not. Attachment was not related to weight loss post-surgery
Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions
© 2019, The Author(s). In the last decade, instigated by the Paris agreement and United Nations Climate Change Conferences (COP22 and COP23), the efforts to limit temperature increase to 1.5 °C above pre-industrial levels are expanding. The required reductions in greenhouse gas emissions imply a massive decarbonization worldwide with much involvement of regions, cities, businesses, and individuals in addition to the commitments at the national levels. Improving end-use efficiency is emphasized in previous IPCC reports (IPCC 2014). Serving as the primary âagents of changeâ in the transformative process towards green economies, households have a key role in global emission reduction. Individual actions, especially when amplified through social dynamics, shape green energy demand and affect investments in new energy technologies that collectively can curb regional and national emissions. However, most energy-economics modelsâusually based on equilibrium and optimization assumptionsâhave a very limited representation of household heterogeneity and treat households as purely rational economic actors. This paper illustrates how computational social science models can complement traditional models by addressing this limitation. We demonstrate the usefulness of behaviorally rich agent-based computational models by simulating various behavioral and climate scenarios for residential electricity demand and compare them with the business as usual (SSP2) scenario. Our results show that residential energy demand is strongly linked to personal and social norms. Empirical evidence from surveys reveals that social norms have an essential role in shaping personal norms. When assessing the cumulative impacts of these behavioral processes, we quantify individual and combined effects of social dynamics and of carbon pricing on individual energy efficiency and on the aggregated regional energy demand and emissions. The intensity of social interactions and learning plays an equally important role for the uptake of green technologies as economic considerations, and therefore in addition to carbon-price policies (top-down approach), implementing policies on education, social and cultural practices can significantly reduce residential carbon emissions
Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements
We have determined spectral phases of Ne autoionizing states from extreme ultraviolet and midinfrared attosecond interferometric measurements and ab initio full-electron time-dependent theoretical calculations in an energy interval where several of these states are coherently populated. The retrieved phases exhibit a complex behavior as a function of photon energy, which is the consequence of the interference between paths involving various resonances. In spite of this complexity, we show that phases for individual resonances can still be obtained from experiment by using an extension of the Fano model of atomic resonances. As simultaneous excitation of several resonances is a common scenario in many-electron systems, the present work paves the way to reconstruct electron wave packets coherently generated by attosecond pulses in systems larger than heliumWork supported by the ERC proof-of-concept Grant No. 780284-Imaging-XChem within the seventh framework program of the European Union, the MINECO Project No. FIS2013-42002-R, the EU-H2020- LASERLABEUROPE-654148, the ANR Projects No. ANR-15-CE30-0001-CIMBAAD, No. ANR-11- EQPX0005-ATTOLAB, and No. ANR-10-LABX-0039- PALM, the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award no. DEGF02-04ER15614, and the NSF Grant No. PHY-1607588. Calculations were performed at CCC-UAM and Marenostrum Supercomputer Center. F. M. acknowledges support from the âSevero Ochoaâ Programme for Centres of Excellence in R&D (MINECO, Grant No. SEV-2016- 0686) and the âMarĂa de Maeztuâ Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377
- âŠ