138 research outputs found

    Error in statistical tests of error in statistical tests

    Get PDF
    BACKGROUND: A recent paper found that terminal digits of statistical values in Nature deviated significantly from an equiprobable distribution, indicating errors or inconsistencies in rounding. This finding, as well as the discovery that a large percentage of p values were inconsistent with reported test statistics, led to a great deal of concern in the popular press and scientific community. The findings ultimately led to new guidelines for all Nature Research Journals. METHODS: We checked the statistical analysis behind the original paper's tests of equiprobability. RESULTS: The original paper tested equiprobability with the Kolmogorov-Smirnov test outside its regime of validity. Correct tests find no statistically significant deviations from equiprobability for the statistical values in Nature. CONCLUSION: Statistical tests should be used correctly

    An Approach to Enhance the Conservation-Compatibility of Solar Energy Development

    Get PDF
    The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity

    Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    Get PDF
    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation

    Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species

    Get PDF
    Many studies have quantified the indirect effect of hydrocarbon-based economies on climate change and biodiversity, concluding that a significant proportion of species will be threatened with extinction. However, few studies have measured the direct effect of new energy production infrastructure on species persistence. in the western US and translate the build-out scenarios into estimated impacts on sage-grouse. We project that future oil and gas development will cause a 7–19 percent decline from 2007 sage-grouse lek population counts and impact 3.7 million ha of sagebrush shrublands and 1.1 million ha of grasslands in the study area.Maps of where oil and gas development is anticipated in the US Intermountain West can be used by decision-makers intent on minimizing impacts to sage-grouse. This analysis also provides a general framework for using predictive models and build-out scenarios to anticipate impacts to species. These predictive models and build-out scenarios allow tradeoffs to be considered between species conservation and energy development prior to implementation

    Does the early frog catch the worm? Disentangling potential drivers of a parasite age–intensity relationship in tadpoles

    Get PDF
    The manner in which parasite intensity and aggregation varies with host age can provide insights into parasite dynamics and help identify potential means of controlling infections in humans and wildlife. A significant challenge is to distinguish among competing mechanistic hypotheses for the relationship between age and parasite intensity or aggregation. Because different mechanisms can generate similar relationships, testing among competing hypotheses can be difficult, particularly in wildlife hosts, and often requires a combination of experimental and model fitting approaches. We used field data, experiments, and model fitting to distinguish among ten plausible drivers of a curvilinear age–intensity relationship and increasing aggregation with host age for echinostome trematode infections of green frogs. We found little support for most of these proposed drivers but did find that the parsimonious explanation for the observed age–intensity relationship was seasonal exposure to echinostomes. The parsimonious explanation for the aggregated distribution of parasites in this host population was heterogeneity in exposure. A predictive model incorporating seasonal exposure indicated that tadpoles hatching early or late in the breeding season should have lower trematode burdens at metamorphosis, particularly with simulated warmer climates. Application of this multi-pronged approach (field surveys, lab experiments, and modeling) to additional parasite–host systems could lead to discovery of general patterns in the drivers of parasite age–intensity and age–distribution relationships

    Measuring the Meltdown: Drivers of Global Amphibian Extinction and Decline

    Get PDF
    Habitat loss, climate change, over-exploitation, disease and other factors have been hypothesised in the global decline of amphibian biodiversity. However, the relative importance of and synergies among different drivers are still poorly understood. We present the largest global analysis of roughly 45% of known amphibians (2,583 species) to quantify the influences of life history, climate, human density and habitat loss on declines and extinction risk. Multi-model Bayesian inference reveals that large amphibian species with small geographic range and pronounced seasonality in temperature and precipitation are most likely to be Red-Listed by IUCN. Elevated habitat loss and human densities are also correlated with high threat risk. Range size, habitat loss and more extreme seasonality in precipitation contributed to decline risk in the 2,454 species that declined between 1980 and 2004, compared to species that were stable (n = 1,545) or had increased (n = 28). These empirical results show that amphibian species with restricted ranges should be urgently targeted for conservation

    Flexible prey handling, preference and a novel capture technique in invasive, sub-adult Chinese mitten crabs

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The attached file is the published version of the article

    Development, standardization and refinement of procedures for evaluating effects of endocrine active compounds on development and sexual differentiation of Xenopus laevis

    Get PDF
    Xenopus laevis has been introduced as a model to study effects of endocrine-active compounds (EAC) on development and sexual differentiation. However, variable and inconsistent data have raised questions about the reliability of the test methods applied. The current study was conducted in two laboratories to develop, refine, and standardize procedures and protocols. Larvae were exposed in flow-through systems to 17β-estradiol (E2), at concentrations from 0.2 to 6.0 μg E2 L−1 in Experiment 1A, and 0.015 to 2.0 μg E2 L−1 in Experiment 1B. In both studies survival (92%, 99%) and percentage of animals that completed metamorphosis (97%, 99%) indicated reproducible biological performance. Furthermore, minor variations in husbandry led to significant differences in snout-to-vent length, weight, and gonad size. In Experiment 1A, almost complete feminization occurred in all E2 treatment groups whereas a concentration response was observed in Experiment 1B resulting in an EC50 of 0.12 μg E2 L−1. The final verified protocol is suitable for determining effects of EAC on development and sexual differentiation in X. laevis

    Evidence for acquisition of virulence effectors in pathogenic chytrids

    Get PDF
    Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd). This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN) proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis

    Co-founding ant queens prevent disease by performing prophylactic undertaking behaviour

    Get PDF
    Abstract Background Social insects form densely crowded societies in environments with high pathogen loads, but have evolved collective defences that mitigate the impact of disease. However, colony-founding queens lack this protection and suffer high rates of mortality. The impact of pathogens may be exacerbated in species where queens found colonies together, as healthy individuals may contract pathogens from infectious co-founders. Therefore, we tested whether ant queens avoid founding colonies with pathogen-exposed conspecifics and how they might limit disease transmission from infectious individuals. Results Using Lasius niger queens and a naturally infecting fungal pathogen Metarhizium brunneum, we observed that queens were equally likely to found colonies with another pathogen-exposed or sham-treated queen. However, when one queen died, the surviving individual performed biting, burial and removal of the corpse. These undertaking behaviours were performed prophylactically, i.e. targeted equally towards non-infected and infected corpses, as well as carried out before infected corpses became infectious. Biting and burial reduced the risk of the queens contracting and dying from disease from an infectious corpse of a dead co-foundress. Conclusions We show that co-founding ant queens express undertaking behaviours that, in mature colonies, are performed exclusively by workers. Such infection avoidance behaviours act before the queens can contract the disease and will therefore improve the overall chance of colony founding success in ant queens
    corecore