145 research outputs found

    Isolation of Lactobacilli with probiotic properties from the human stomach

    Get PDF
    Aims: Recent evidence suggests that the human gastric microbiota is much more diverse than previously thought. The aim of this study was to assess the potential for isolating lactobacilli from the human stomach.Methods and Results: Lactobacilli were selectively cultured from gastric biopsies from 12 patients undergoing routine endoscopy. Lactobacilli were present in four of 12 biopsies. We isolated, in total 10 different strains representing five species (Lactobacillus gasseri, L. fermentum, L. vaginalis, L. reuteri and L. salivarius). The 10 isolates varied greatly in their ability to inhibit the growth of two Gram-positive bacteria and two Gram-negative bacteria. Furthermore, the acid and bile resistance profiles of the 10 isolates spanned a wide range. Conclusions: Five different Lactobacillus species were cultured from human gastric biopsies for the first time. Significance and Impact of the Study: Diverse Lactobacillus species are more prevalent in the human stomach than previously recognized, representing an untapped source of bacteria with beneficial probiotic and/or biotechnological properties

    Quantitative Effect of Suboptimal Codon Usage on Translational Efficiency of mRNA Encoding HIV-1 gag in Intact T Cells

    Get PDF
    The sequences of wild-isolate strains of Human Immunodeficiency Virus-1 (HIV-1) are characterized by low GC content and suboptimal codon usage. Codon optimization of DNA vectors can enhance protein expression both by enhancing translational efficiency, and by altering RNA stability and export. Although gag codon optimization is widely used in DNA vectors and experimental vaccines, the actual effect of altered codon usage on gag translational efficiency has not been quantified.To quantify translational efficiency of gag mRNA in live T cells, we transfected Jurkat cells with increasing doses of capped, polyadenylated synthetic mRNA corresponding to wildtype or codon-optimized gag sequences, measured Gag production by quantitative ELISA and flow cytometry, and estimated the translational efficiency of each transcript as pg of Gag antigen produced per microg of input mRNA. We found that codon optimization yielded a small increase in gag translational efficiency (approximately 1.6 fold). In contrast when cells were transfected with DNA vectors requiring nuclear transcription and processing of gag mRNA, codon optimization resulted in a very large enhancement of Gag production.We conclude that suboptimal codon usage by HIV-1 results in only a slight loss of gag translational efficiency per se, with the vast majority of enhancement in protein expression from DNA vectors due to altered processing and export of nuclear RNA

    The HP0256 gene product is involved in motility and cell envelope architecture of Helicobacter pylori

    Get PDF
    Background: Helicobacter pylori is the causative agent for gastritis, and peptic and duodenal ulcers. The bacterium displays 5-6 polar sheathed flagella that are essential for colonisation and persistence in the gastric mucosa. The biochemistry and genetics of flagellar biogenesis in H. pylori has not been fully elucidated. Bioinformatics analysis suggested that the gene HP0256, annotated as hypothetical, was a FliJ homologue. In Salmonella, FliJ is a chaperone escort protein for FlgN and FliT, two proteins that themselves display chaperone activity for components of the hook, the rod and the filament. Results: Ablation of the HP0256 gene in H. pylori significantly reduced motility. However, flagellin and hook protein synthesis was not affected in the HP0256 mutant. Transmission electron transmission microscopy revealed that the HP0256 mutant cells displayed a normal flagellum configuration, suggesting that HP0256 was not essential for assembly and polar localisation of the flagella in the cell. Interestingly, whole genome microarrays of an HP0256 mutant revealed transcriptional changes in a number of genes associated with the flagellar regulon and the cell envelope, such as outer membrane proteins and adhesins. Consistent with the array data, lack of the HP0256 gene significantly reduced adhesion and the inflammatory response in host cells. Conclusions: We conclude that HP0256 is not a functional counterpart of FliJ in H. pylori. However, it is required for full motility and it is involved, possibly indirectly, in expression of outer membrane proteins and adhesins involved in pathogenesis and adhesion

    Flocculation characteristics of suspended Mississippi River mud under variable turbulence, water and salt sources, and salinity: a laboratory study

    Get PDF
    Muddy sediment constitutes a major fraction of the suspended sediment mass carried by the Mississippi River. Thus, adequate knowledge of the transport dynamics of suspended mud in this region is critical in devising efficient management plans for coastal Louisiana. We conducted laboratory tank experiments on the sediment suspended in the lower reaches of the Mississippi River to provide insight into the flocculation behavior of the mud. In particular, we measure how the floc size distribution responds to changing environmental factors of turbulent energy, sediment concentration, and changes in base water composition and salinity during summer and winter. We also compare observations from the tank experiments to in situ observations. Turbulence shear rate, a measure of river hydrodynamic energy, was found to be the most influential factor in determining mud floc size. All flocs produced at a given shear rate could be kept in suspension down to shear rates of approximately 20 s−1. At this shear rate, flocs on the order of 150–200 ÎŒm and larger can settle out. Equilibrium floc size was not found to depend on sediment concentration; flocs larger than 100 ÎŒm formed in sediment concentrations as low as 20 mgL−1. An increase in salinity generated by adding salts to river water suspensions did not increase the flocculation rate or equilibrium size. However, the addition of water collected from the Gulf of Mexico to river-water suspensions did enhance the flocculation rate and the equilibrium sizes. We speculate that the effects of Gulf of Mexico water originate from its biomatter content rather than its ion composition. Floc sizes in the mixing tanks were comparable to those from the field for similar estimated turbulent energy. Flocs were found to break within minutes under increased turbulence but can take hours to grow under conditions of reduced shear in freshwater settings. Growth was faster with the addition of Gulf of Mexico water. Overall, the experiments provide information on how suspended mud in the lower reaches of the Mississippi might respond to changes in turbulence and salinity moving from the fluvial to marine setting through natural distributary channels or man-made diversions

    Effect of Salt Concentration in Water‐In‐Salt Electrolyte on Supercapacitor Applications

    Get PDF
    Electrical double‐layer supercapacitors offer numerous advantages in the context of energy storage; however, their widespread use is hindered by the high unit energy cost and low specific energy. Recently, water‐in‐salt (WIS) electrolytes have garnered interest for use in energy storage devices. Nevertheless, their direct application in high‐power devices is limited due to their high viscosity. In this study, we investigate the WIS Lithium bis(trifluoromethanesulfonyl)Imide (LiTFSI) electrolyte, revealing a high specific capacitance despite its elevated viscosity and restricted ionic conductivity. Our approach involves nuclear magnetic resonance (NMR) analysis alongside electrochemical analyses, highlighting the pronounced advantage of the WIS LiTFSI electrolyte over the WIS LiCl electrolyte at the molecular level. The NMR analysis shows that the LiTFSI electrolyte ions preferentially reside within the activated carbon pore network in the absence of an applied potential, in contrast to LiCl where the ions are more evenly distributed between the in‐pore and ex‐pore environments. This difference may contribute to the difference in capacitance between the two electrolytes observed during electrochemical cycling

    Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes

    Get PDF
    Aims/hypothesis: The circadian clock influences both diabetes and immunity. Our goal in this study was to characterise more thoroughly the circadian patterns of immune cell populations and cytokines that are particularly relevant to the immune pathology of type 1 diabetes and thus fill in a current gap in our understanding of this disease. Methods: Ten individuals with established type 1 diabetes (mean disease duration 11 years, age 18-40 years, six female) participated in a circadian sampling protocol, each providing six blood samples over a 24 h period. Results: Daily ranges of population frequencies were sometimes large and possibly clinically significant. Several immune populations, such as dendritic cells, CD4 and CD8 T cells and their effector memory subpopulations, CD4 regulatory T cells, B cells and cytokine IL-6, exhibited statistically significant circadian rhythmicity. In a comparison with historical healthy control individuals, but using shipped samples, we observed that participants with type 1 diabetes had statistically significant phase shifts occurring in the time of peak occurrence of B cells (+4.8 h), CD4 and CD8 T cells (~ +5 h) and their naive and effector memory subsets (~ +3.3 to +4.5 h), and regulatory T cells (+4.1 h). An independent streptozotocin murine experiment confirmed the phase shifting of CD8 T cells and suggests that circadian dysrhythmia in type 1 diabetes might be an effect and not a cause of the disease. Conclusions/interpretation: Future efforts investigating this newly described aspect of type 1 diabetes in human participants are warranted. Peripheral immune populations should be measured near the same time of day in order to reduce circadian-related variation

    Single-cell sequencing of iPSC-Dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes

    Get PDF
    Induced pluripotent stem cell (iPSC)-derived dopamine neurons provide an opportunity to model Parkinson’s disease (PD), but neuronal cultures are confounded by asynchronous and heterogeneous appearance of disease phenotypes in vitro. Using high-resolution, single-cell transcriptomic analyses of iPSC-derived dopamine neurons carrying the GBA-N370S PD risk variant, we identified a progressive axis of gene expression variation leading to endoplasmic reticulum stress. Pseudotime analysis of genes differentially expressed (DE) along this axis identified the transcriptional repressor histone deacetylase 4 (HDAC4) as an upstream regulator of disease progression. HDAC4 was mislocalized to the nucleus in PD iPSC-derived dopamine neurons and repressed genes early in the disease axis, leading to late deficits in protein homeostasis. Treatment of iPSC-derived dopamine neurons with HDAC4-modulating compounds upregulated genes early in the DE axis and corrected PD-related cellular phenotypes. Our study demonstrates how single-cell transcriptomics can exploit cellular heterogeneity to reveal disease mechanisms and identify therapeutic targets

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
    • 

    corecore