20 research outputs found

    A case study of an individual participant data meta-analysis of diagnostic accuracy showed that prediction regions represented heterogeneity well

    Get PDF
    The diagnostic accuracy of a screening tool is often characterized by its sensitivity and specificity. An analysis of these measures must consider their intrinsic correlation. In the context of an individual participant data meta-analysis, heterogeneity is one of the main components of the analysis. When using a random-effects meta-analytic model, prediction regions provide deeper insight into the effect of heterogeneity on the variability of estimated accuracy measures across the entire studied population, not just the average. This study aimed to investigate heterogeneity via prediction regions in an individual participant data meta-analysis of the sensitivity and specificity of the Patient Health Questionnaire-9 for screening to detect major depression. From the total number of studies in the pool, four dates were selected containing roughly 25%, 50%, 75% and 100% of the total number of participants. A bivariate random-effects model was fitted to studies up to and including each of these dates to jointly estimate sensitivity and specificity. Two-dimensional prediction regions were plotted in ROC-space. Subgroup analyses were carried out on sex and age, regardless of the date of the study. The dataset comprised 17,436 participants from 58 primary studies of which 2322 (13.3%) presented cases of major depression. Point estimates of sensitivity and specificity did not differ importantly as more studies were added to the model. However, correlation of the measures increased. As expected, standard errors of the logit pooled TPR and FPR consistently decreased as more studies were used, while standard deviations of the random-effects did not decrease monotonically. Subgroup analysis by sex did not reveal important contributions for observed heterogeneity; however, the shape of the prediction regions differed. Subgroup analysis by age did not reveal meaningful contributions to the heterogeneity and the prediction regions were similar in shape. Prediction intervals and regions reveal previously unseen trends in a dataset. In the context of a meta-analysis of diagnostic test accuracy, prediction regions can display the range of accuracy measures in different populations and settings

    Phenotyping of idiopathic pulmonary arterial hypertension : a registry analysis

    No full text
    Background Among patients meeting diagnostic criteria for idiopathic pulmonary arterial hypertension (IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for carbon monoxide (DLCO) and a smoking history. The present study aimed at a detailed characterisation of these patients. Methods We analysed data from two European pulmonary hypertension registries, COMPERA (launched in 2007) and ASPIRE (from 2001 onwards), to identify patients diagnosed with IPAH and a lung phenotype defined by a DLCO of less than 45% predicted and a smoking history. We compared patient characteristics, response to therapy, and survival of these patients to patients with classical IPAH (defined by the absence of cardiopulmonary comorbidities and a DLCO of 45% or more predicted) and patients with pulmonary hypertension due to lung disease (group 3 pulmonary hypertension). Findings The analysis included 128 (COMPERA) and 185 (ASPIRE) patients with classical IPAH, 268 (COMPERA) and 139 (ASPIRE) patients with IPAH and a lung phenotype, and 910 (COMPERA) and 375 (ASPIRE) patients with pulmonary hypertension due to lung disease. Most patients with IPAH and a lung phenotype had normal or near normal spirometry, a severe reduction in DLCO, with the majority having no or a mild degree of parenchymal lung involvement on chest computed tomography. Patients with IPAH and a lung phenotype (median age, 72 years [IQR 65–78] in COMPERA and 71 years [65–76] in ASPIRE) and patients with group 3 pulmonary hypertension (median age 71 years [65–77] in COMPERA and 69 years [63–74] in ASPIRE) were older than those with classical IPAH (median age, 45 years [32–60] in COMPERA and 52 years [38–64] in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). While 99 (77%) patients in COMPERA and 133 (72%) patients in ASPIRE with classical IPAH were female, there was a lower proportion of female patients in the IPAH and a lung phenotype cohort (95 [35%] COMPERA; 75 [54%] ASPIRE), which was similar to group 3 pulmonary hypertension (336 [37%] COMPERA; 148 [39%] ASPIRE]). Response to pulmonary arterial hypertension therapies at first follow-up was available from COMPERA. Improvements in WHO functional class were observed in 54% of patients with classical IPAH, 26% of patients with IPAH with a lung phenotype, and 22% of patients with group 3 pulmonary hypertension (p<0·0001 for classical IPAH vs IPAH and a lung phenotype, and p=0·194 for IPAH and a lung phenotype vs group 3 pulmonary hypertension); median improvements in 6 min walking distance were 63 m, 25 m, and 23 m for these cohorts respectively (p=0·0015 for classical IPAH vs IPAH and a lung phenotype, and p=0·64 for IPAH and a lung phenotype vs group 3 pulmonary hypertension), and median reductions in N-terminal-pro-brain-natriuretic-peptide were 58%, 27%, and 16% respectively (p=0·0043 for classical IPAH vs IPAH and a lung phenotype, and p=0·14 for IPAH and a lung phenotype vs group 3 pulmonary hypertension). In both registries, survival of patients with IPAH and a lung phenotype (1 year, 89% in COMPERA and 79% in ASPIRE; 5 years, 31% in COMPERA and 21% in ASPIRE) and group 3 pulmonary hypertension (1 year, 78% in COMPERA and 64% in ASPIRE; 5 years, 26% in COMPERA and 18% in ASPIRE) was worse than survival of patients with classical IPAH (1 year, 95% in COMPERA and 98% in ASPIRE; 5 years, 84% in COMPERA and 80% in ASPIRE; p<0·0001 for IPAH with a lung phenotype vs classical IPAH in both registries). Interpretation A cohort of patients meeting diagnostic criteria for IPAH with a distinct, presumably smoking-related form of pulmonary hypertension accompanied by a low DLCO, resemble patients with pulmonary hypertension due to lung disease rather than classical IPAH. These observations have pathogenetic, diagnostic, and therapeutic implications, which require further exploration

    Early vasculitis in the mercuric chloride induced Brown Norway rat model is neutrophil independent

    No full text
    In the Brown Norway rat, mercuric chloride (HgCl2) induces an autoimmune syndrome characterized by necrotizing vasculitis, predominantly affecting the caecum, and a polyclonal B-cell response. The time course of vasculitis is biphasic, with an αβ T-cell independent phase occurring within 24 h, and a T-cell and neutrophil dependent phase, maximal at two weeks. The pathogenesis of the early phase of vasculitis is unclear, and this study aims to examine the role of neutrophils
    corecore