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A case study of an individual 
participant data meta‑analysis 
of diagnostic accuracy showed 
that prediction regions represented 
heterogeneity well
Aurelio López Malo Vázquez de Lara 1, Parash Mani Bhandari 1,2, Yin Wu 1,2,3, Brooke Levis 1,2,4, 
Brett Thombs 1,2,3,5,6,7,8, Andrea Benedetti 2,9,10* & DEPRESsion Screening Data (DEPRESSD) 
PHQ‑9 Collaboration *

The diagnostic accuracy of a screening tool is often characterized by its sensitivity and specificity. An 
analysis of these measures must consider their intrinsic correlation. In the context of an individual 
participant data meta‑analysis, heterogeneity is one of the main components of the analysis. When 
using a random‑effects meta‑analytic model, prediction regions provide deeper insight into the 
effect of heterogeneity on the variability of estimated accuracy measures across the entire studied 
population, not just the average. This study aimed to investigate heterogeneity via prediction regions 
in an individual participant data meta‑analysis of the sensitivity and specificity of the Patient Health 
Questionnaire‑9 for screening to detect major depression. From the total number of studies in the 
pool, four dates were selected containing roughly 25%, 50%, 75% and 100% of the total number of 
participants. A bivariate random‑effects model was fitted to studies up to and including each of these 
dates to jointly estimate sensitivity and specificity. Two‑dimensional prediction regions were plotted 
in ROC‑space. Subgroup analyses were carried out on sex and age, regardless of the date of the study. 
The dataset comprised 17,436 participants from 58 primary studies of which 2322 (13.3%) presented 
cases of major depression. Point estimates of sensitivity and specificity did not differ importantly as 
more studies were added to the model. However, correlation of the measures increased. As expected, 
standard errors of the logit pooled TPR and FPR consistently decreased as more studies were used, 
while standard deviations of the random‑effects did not decrease monotonically. Subgroup analysis 
by sex did not reveal important contributions for observed heterogeneity; however, the shape of the 
prediction regions differed. Subgroup analysis by age did not reveal meaningful contributions to the 
heterogeneity and the prediction regions were similar in shape. Prediction intervals and regions reveal 
previously unseen trends in a dataset. In the context of a meta‑analysis of diagnostic test accuracy, 
prediction regions can display the range of accuracy measures in different populations and settings.

Abbreviations
BREM  Bivariate random effects model
PHQ-9  Patient health questionnaire-9
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IPDMA  Individual participant data meta-analysis
FPR  False positive rate (1 − specificity)
TPR  True positive rate (sensitivity)

Medical screening tests are used to identify possible disease before signs or symptoms present, such as HIV 
antibody testing, or to identify the presence of a condition that has not otherwise been identified, such as in 
depression screening. The accuracy of a screening test is evaluated by comparing against a reference standard that 
is thought to represent the true status of the target condition. Accuracy is typically characterized by sensitivity 
or true positive rate (TPR), which is the probability of a positive screen given that the patient has the condition, 
and 1-specificity or false positive rate (FPR), which is the probability of a positive screen given that the patient 
does not have the condition. When screening test results are ordinal or continuous, a threshold is set to classify 
test results as positive or negative.

Meta-analyses of test accuracy pool results from primary studies to attempt to overcome imprecision due to 
small samples, conduct subgroup analyses that were not feasible in the primary studies, and estimate variance 
within and between  studies1. Such meta-analyses must consider the intrinsic correlation between TPR and FPR 
across studies. This is because selecting a lower threshold for classifying positive screening results would simul-
taneously increase the TPR of the test but also its FPR while a higher threshold would have the opposite effect. 
The bivariate random effects model (BREM) is commonly used because it allows for simultaneous estimation of 
TPR and FPR with the random effects assumed to have a joint normal  distribution2.

The inter-study heterogeneity or variability of TPR and FPR is an important output from a meta-analysis and 
may be characterized by several different metrics. The most direct is the between-study variance, often denoted 
as τ 2 . However, given that this parameter ranges from zero to infinity, interpreting its value as “small” or “large” 
is difficult. Other approaches to characterize heterogeneity, such as Cochran’s Q or I2 have been shown to have 
important limitations as well. Cochran’s Q has limited power with small numbers of studies and is overly sensitive 
with large numbers of  studies3, whereas I2 ranges from 0 to 1 and represents the proportion of observed vari-
ability attributable to heterogeneity but does not provide information about variation in sensitivity or  specificity4.

Another way to describe heterogeneity is the prediction interval. This represents an estimated range of values 
that has a predetermined probability of containing the estimate of interest from a new study sampled from the 
same population as used to fit the model. The use of prediction intervals has important advantages in that it 
summarizes point estimates and variance components from the BREM as the interval considers overall mean 
estimates of TPR and FPR, their standard errors and between-study  variance5. The Cochrane Handbook for 
Systematic Reviews of Diagnostic Test Accuracy regards the prediction interval as the best graphical depiction of 
the magnitude of  heterogeneity6. In the bivariate case, prediction intervals for TPR and FPR are represented as 
regions in two-dimensional space where this set of values has a predetermined probability of containing a new 
two-dimensional vector of estimates from a new study comparable to those in the  pool7.

The Patient Health Questionnaire-9 (PHQ-9) is a self-report depression symptom questionnaire that con-
sists of nine items, each scored 0 to 3 (total possible score 0 to 27), that can be used for depression screening. 
A standard threshold score of 10 or greater has been shown to maximize the sum of sensitivity and specificity 
(TPR and 1-FPR)8. Meta-analyses assessing the diagnostic accuracy of the PHQ-9 and other similar screening 
questionnaires often report a confidence interval around pooled estimates of TPR and  FPR9,10. The confidence 
interval contains the true value of the mean measure, here the pooled estimate of TPR or FPR with probability 
0.95. Consequently, other authors have argued that prediction intervals are more useful since they provide infor-
mation on the range of possible accuracy values that may be encountered in a future  study11,12. Thus, a prediction 
interval and a confidence interval are not the same thing and serve different purposes. The confidence interval 
is a measure of precision that indicates how accurately we have estimated the pooled sensitivity or specificity 
based on the standard error and depends on the number of studies in the meta-analysis13. On the other hand, the 
prediction interval measures dispersion, is based on the standard deviation that shows how much the measures 
vary across different populations, and is not related to the number of studies in the  analysis13. The prediction 
interval is more informative when it comes to heterogeneity, describing the extent of dispersion in the context 
of sensitivity or  specificity13. A clinician using the results from a meta-analysis on the diagnostic accuracy of 
the PHQ-9 would have a better idea of how the diagnostic accuracy varied across studies, and indeed, how the 
PHQ-9 might be expected to perform in a new study, or setting such as the physician’s practice.

Because diagnostic accuracy is represented by the true positive rate (TPR) and the false positive rate (FPR), 
a prediction region is used rather than two prediction intervals. The region, which is elliptical in the logit space, 
takes into account the correlation between logit(TPR) and logit(FPR) which is reflected in the orientation and size 
of the minor axes of the prediction ellipse. The orientation of the ellipse relates to the “slope” linking logit(TPR) 
and logit(FPR) observations. The strength of the correlation is depicted by the width of the ellipses about their 
minor axis. Moreover, the prediction region makes explicit that some combinations of TPR and FPR are unlikely, 
whereas the two intervals do not.

Despite several sources suggesting that prediction intervals be used to quantify and describe heterogeneity 
and the range of accuracy values, they are still  underused11,12. The objective of the present study was to illustrate 
the use of prediction regions for TPR and FPR of the PHQ-9 as a numerical and graphical depiction of the het-
erogeneity in an individual participant meta-analysis (IPDMA) and investigate how these regions (1) change as 
more studies are included in the BREM, and (2) vary across subgroups.
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Methods
This study is a secondary analysis of an IPDMA. For the main IPDMA registered in PROSPERO 
(CRD42014010673), a protocol was  published14 and results have been  reported8. The present analysis extends 
the work specified in the protocol by characterizing heterogeneity in the study pool via prediction regions con-
structed from the BREM, and using the region to describe the range of likely mean measures of TPR and FPR 
from an unseen study similar to those in the pool (with probability 0.95).

Description of dataset. For the original IPDMA, studies were eligible for inclusion if: (1) they included 
PHQ-9 scores, (2) they included major depression classification based on a validated diagnostic interview, (3) 
the time interval between administration of the PHQ-9 and the diagnostic interview was no more than 2 weeks, 
and (4) participants were at least 18-years old and recruited outside of psychiatric settings. The studies and data 
included in the dataset were selected from the results of an online search strategy from 2000 to 2016. Eligible 
studies were assessed independently by two investigators. For further details on the search and selection pro-
cesses, refer to the published  protocol14.

Data analysis for the present study. For each study in the PHQ-9 IPDMA dataset, generalized linear 
models were fitted to estimate TPR and FPR and their respective 95% CIs. From these, forest plots were pro-
duced for a qualitative assessment of heterogeneity. All analyses were completed in  R15.

From the dataset, three dates were selected as “cutoff dates” (as reported in the “Date” column in Additional 
File 1). This approach was chosen to simulate how in reality more information becomes available on the topic 
over time and investigate the effects this accrual has on the heterogeneity of the study pool. The cutoff dates 
were selected so that participants in studies conducted up to and including each cutoff date comprised roughly 
25%, 50% and 75% of the total number of participants. A BREM, as described in Additional File 2, was fitted 
for studies conducted up to and including each of the cutoff dates to jointly estimate TPR and FPR using the 
function “glmer” from the package “lme4”15,16. As these measures are described in two-dimensional ROC-space, 
confidence and prediction regions are analyzed instead of their one-dimensional analogues: confidence, and 
prediction intervals. For each model, 95% confidence and prediction regions were constructed following the 
method described by  Chew7 (for more details, refer to Additional File 2). At each cutoff date, the confidence 
region associated with the model was plotted as well as the individual measure estimates from the studies used 
for the fit. Similarly, prediction regions were plotted with the individual measure estimates of studies after the 
corresponding cutoff date to assess coverage. Finally, a BREM was fitted using data from all studies and 95% 
confidence and prediction regions were constructed in the same manner as above. To quantify the size of all 
prediction regions, we also estimated the area of the interval in logit space.

Prediction intervals for participant subgroups were also constructed to assess whether heterogeneity could be 
due to age or sex or participants. Subgroups were defined using binary sex categories and, separately, age quartiles.

Ethics approval and consent to participate. As this study involved only analysis of previously collected 
de-identified data and because all included studies were required to have obtained ethics approval and informed 
consent, the Research Ethics Committee of the Jewish General Hospital determined that ethics approval was not 
required.

Results
The final IPDMA dataset consisted of 58 primary studies, totaling 17,436 participants of which 2322 (13.3%) 
presented cases of major depression and 1794 (10.3% of total, 77.3% of cases) were correctly identified as cases 
using the standard PHQ-9 cutoff score of ≥ 10.

Main analysis. A summary of the individual participant data can be found in Additional File 1. The results 
of the generalized linear models per study for sensitivity and specificity (TPR and 1-FPR) can be seen in forest 
plots (Fig. 1). The presence of heterogeneity can be visually assessed in Fig. 1 Confidence intervals for specificity 
were much narrower than those for sensitivity.

Studies published up to and including the cutoff dates of 2009, 2011 and 2013 included 19, 28 and 49 of the 58 
available studies and 28.2%, 59.4% and 81.8% of total participants respectively. At the 2009 cutoff, the TPR and 
FPR were 0.86 and 0.18 (see Table 1). Increasing the number of studies at each cutoff date did not result in impor-
tant differences in the pooled TPR and FPR, and the 95% confidence intervals for their estimates overlapped. 
As the number of studies increased, the standard error of the estimated pooled TPR and FPR decreased (not 
shown), and correspondingly, the confidence intervals and regions shrank as expected (see Table 1 and Fig. 2).

There was some evidence that between-study standard deviation estimates for FPR decreased from τ̂0 = 0.87 
at the 2009 cutoff date, to τ̂0 = 0.69 when all studies were included (see Table 2), though confidence intervals 
largely overlapped. This decrease in the estimated variance component is reflected in the narrowing of the predic-
tion region in ROC space along the FPR direction (see Fig. 2C*,D*). Correspondingly, the area of the prediction 
region decreased as more data was included (Table 2). The correlation estimates for the random effects increased 
(from 0.16 to 0.43) as more studies were included.

The change in the estimated correlation between logit(TPR) and logit(FPR) is reflected in the orientation 
and size of the minor axes of the prediction ellipses in the top row of Fig. 2. The orientation of the ellipses relates 
to the “slope” linking logit(TPR) and logit(FPR) observations. The strength of the correlation is depicted by the 
width of the ellipses about their minor axis.
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Subgroup analyses. Female participants represented 57% of participants. For this subgroup, BREM esti-
mates for TPR and FPR were 0.84 and 0.19. For the male subjects, BREM estimates were 0.80 and 0.14 for TPR 
and FPR respectively (see Table 3). Between-study standard deviation estimates were both higher in the female 
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Figure 1.  Forest plots of sensitivity (TPR) and specificity (1-FPR). (1) The dotted lines in the sensitivity forest 
plots indicate that the data from the study indicated a 100% true positive rate and a 0% false positive rate. This 
caused the sensitivity estimate to be 1 but the standard error was large enough to cover the whole interval (0, 1) . 
(2) Red dot-dashed lines indicate the selected cutoff dates for the BREM. (3) Studies are sorted by the year in 
which the study started, while the label indicates the year in which they were published.)
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Table 1.  Summary of pooled FPR and TPR results from the BREM.

Time interval Parameter Estimate 95% CI

2001–2009
FPR (1 − specificity) 0.18 (0.12, 0.25)

TPR (sensitivity) 0.86 (0.78, 0.92)

2001–2011
FPR (1 − specificity) 0.19 (0.14, 0.24)

TPR (sensitivity) 0.85 (0.79, 0.89)

2001–2013
FPR (1 − specificity) 0.17 (0.14, 0.21)

TPR (sensitivity) 0.85 (0.80, 0.89)

2001–2017
FPR (1 − specificity) 0.17 (0.14, 0.19)

TPR (sensitivity) 0.83 (0.79, 0.87)
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Figure 2.  Prediction and confidence regions through time (FPR = 1 − specificity, TPR = sensitivity). Black dots 
are the study specific estimates. The red dot is the pooled estimate. The black line indicates the prediction region. 
The red line is the confidence region. The top panel show the estimates and regions in logit-space, while the 
bottom panel are in the probability-space. (1) The change in the estimated correlation between sensitivity and 
1 − specificity is reflected in the orientation and size of the minor axes of the prediction ellipses in the top row 
of figure. The orientation of the ellipses relates to the “slope” linking TPR and FPR observations. The strength of 
the correlation is depicted by the width of the ellipses about their minor axis.)

Table 2.  Summary of between study variances from the BREM* *All estimates are on the logit scales. 
Confidence intervals for τ0 , τ1, andρ̂τ were estimated using parametric bootstrap with 1000 replicates.

Cutoff date Parameter Estimate Correlation ( ̂ρτ) Area of prediction region

2009
τ0 0.87 (0.53, 1.18)

0.16 (− 0.46, 0.71) 22.83
τ1 0.99 (0.48, 1.42)

2011
τ0 0.87 (0.59, 1.08)

0.32 (− 0.16, 0.71) 16.65
τ1 0.85 (0.54, 1.17)

2013
τ0 0.71 (0.54, 0.88)

0.44 (0.13, 0.73) 13.51
τ1 0.98 (0.69, 1.26)

Full
τ0 0.69 (0.54, 0.82)

0.43 (0.12, 0.71) 11.94
τ1 0.92 (0.67, 1.16)
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group than in the male. Estimated correlation of the random effects was greater in the male group (see Table 3 
and Fig. 3). The area of the region (in logit space) for the female subgroup was larger than that in the males (see 
Table 3 and Fig. 3). Overall, there was no clear indication that sex meaningfully contributes to heterogeneity in 
the whole sample.

The quartiles for the age of participants were Q1 = 35 , Q2 = 51 , Q3 = 64 . Quantitative results of the BREM 
by age subgroup are presented in Table 4. Assessment of heterogeneity in these subgroups is summarized by the 
prediction regions in Fig. 4. In ROC space it can be observed that between-study standard deviation of FPR is 
not considerably different in any age subgroup ranging from 0.63 to 0.75. Between-study standard deviation of 
TPR is greatest among the group younger than 35 years ( ̂τ1 = 1.41 ) and lowest for the group between 51 and 
64 years old ( ̂τ1 = 0.80 ). This comparison may also be observed by comparing the areas of their corresponding 
prediction regions. In logit-ROC space (Fig. 4A) it can be observed that the direction of correlation is similar 
across subgroups. The strength of the correlation, however, reaches a maximum in the age group between 51 and 
64 years old ( ̂ρτ = 0.66 ). No important contribution to the overall heterogeneity of the sample could be clearly 
identified from observing the prediction regions between the age subgroups.

Table 3.  Summary of BREM by sex. *Standard deviations relate to the logit estimates. These are τ0, τ1.

Subgroup Parameter
Pooled estimate 
(95% CI)

Between study standard 
deviations* (95% CI) ρ̂τ (95% CI)

Area of 
prediction 
region

Female
FPR 0.19 (0.16, 0.22) 0.73 (0.53, 0.88)

0.30 (− 0.08, 0.67) 14.58
TPR 0.84 (0.79, 0.88) 1.00 (0.67, 1.29)

Male
FPR 0.14 (0.12, 0.17) 0.68 (0.49, 0.83)

0.69 (0.35, 100) 9.03
TPR 0.80 (0.75, 0.85) 0.85 (0.49, 1.15)
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Figure 3.  Prediction regions by sex subgroup (FPR = 1 − specificity, TPR = sensitivity).

Table 4.  Summary of BREM by age subgroup. *The 25th, 50th and 75th percentiles were used to define the 
age ranges.

Age range* Parameter
Pooled estimate 
(95% CI)

Between study standard 
deviations* (95% CI) ρ̂τ (95% CI)

Area of 
prediction region

[0, 35]
FPR 0.18 (0.15, 0.22) 0.66 (0.42, 0.86)

0.40 (− 0.08, 0.84) 18.31
TPR 0.88 (0.80, 0.94) 1.41 (0.82, 2.02)

(35, 51]
FPR 0.18 (0.15, 0.22) 0.68 (0.47, 0.86)

0.56 (0.15, 1.00) 11.43
TPR 0.82 (0.76, 0.87) 0.93 (0.51, 1.30)

(51, 64]
FPR 0.15 (0.12, 0.18) 0.63 (0.41, 0.80)

0.66 (0.20, 1.00) 8.24
TPR 0.79 (0.73, 0.85) 0.80 (0.41, 1.14)

(64,∞)
FPR 0.14 (0.11, 0.17) 0.75 (0.49, 0.95)

0.42 (− 0.13, 1.00) 15.18
TPR 0.85 (0.78, 0.92) 0.98 (0.42, 1.49)
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Discussion
The present study aimed to characterize heterogeneity in an IPDMA of diagnostic test accuracy measures for the 
PHQ-9. The location of the overall estimates for TPR and FPR did not vary considerably as more studies were 
included. The size of the confidence region around the estimates shrank as more data were used in the model. The 
confidence region not only decreased in size but also changed shape as the correlation of the measures increased.

Prediction regions are one way to depict heterogeneity. Along the TPR axis, the prediction region changed 
erratically as more studies with differing estimates were included. Regarding FPR, the region consistently nar-
rowed. This supports the initial inspection of the forest plots where sensitivity estimates (and therefore FPR), 
while scattered, showed less variability than the TPR estimates. The shape of the prediction region reflects the 
underlying positive correlation of these measures. Looking at Fig. 2D*, it can be observed that while a new 
study may estimate a high FPR (top-right corner of the prediction region), it is unlikely that the same study 
will simultaneously estimate a low TPR, say, below 0.5, as the coordinate in ROC-space would fall outside the 
95% prediction region; this becomes more and more improbable as FPR increases. In the same way, a new study 
is unlikely to estimate low TPR and high FPR. The size of the prediction region is not guaranteed to decrease 
as more estimates are included, as seen in the 2013 cutoff (Fig. 2C*). The region updates, as more information 
becomes available on the location of individual estimates, to accurately represent the overall trends in the data.

Both confidence and prediction regions considering only the one-dimensional confidence/prediction inter-
vals could be misleading, if interpreted naively. As an example, in Fig. 2D* the one-dimensional prediction 
intervals range from near 0 to almost 0.6 for FPR and from about 0.3 to 1 for TPR. However, if a clinician who 
administered the PHQ-9 wishes to consider the worst estimates for both accuracy measures i.e., 0.3 for TPR 
and 0.6 for FPR, this estimate is outside of the prediction region and the clinician could draw false conclusions 
from their assumptions.

The subgroup analyses aided in investigating possible sources of heterogeneity among the study pool. Predic-
tion regions by subgroups can reveal some differences that might be hard to appreciate when only one-dimen-
sional prediction intervals are used. Subgroup analysis by sex revealed no statistically significant differences 
between the point estimates of mean TPR and FPR between the female and male groups or when compared to 
overall population estimates; this coincides with the results of the main PHQ-9  IPDMA8. Both prediction regions 
for male and female groups span a comparable length parallel to either axis, although the shape of the ellipse in 
logit-ROC or the slanted border in ROC space differ between groups to some extent. This may be a depiction 
of the observed difference in the point estimates for correlation for both fixed and random effects between the 
female and male groups. The location of TPR and FPR estimates by age subgroup did not differ greatly from the 
overall population estimates. These regions were similar in size and shape: the largest region corresponding to 
the age group between 18 and 35 years old, being widest in the TPR direction, and the smallest corresponding 
to the 51 to 64 cohorts. While categorizing age has some downsides, it allowed us to present prediction regions 
by age category and improved interpretation of results.

The use of prediction intervals has been suggested in the literature as a complete summary of a random effects 
meta-analysis and a proper characterization of  heterogeneity17. In meta-analyses that aim to estimate drug effi-
cacy for a certain condition, prediction intervals provide information about its possible effects in a new, similar 
sample to the ones in the study pool. IntHout, Ioannidis, Rovers and Goeman report that prediction intervals 
which include the null value suggest that intervention effects could be null or even in the opposite direction of 
the intended  effect11. In a meta-analysis, reporting only a confidence interval around an overall pooled estimate 
may mask the possibility that, in some setting, treatments are  ineffective12. In the context of diagnostic accuracy, 
both TPR and FPR are sought to be different than 0.5. If either measure were to take on this value, the test would 
distinguish cases of major depression no better than a coin flip. Based on the prediction intervals in this study, it 
seems unlikely that in settings similar to the ones in the 58 studies available, both TPR and FPR are equal to 0.5. 
Prediction intervals have been reported to also aid in drawing conclusions from studies of varying size, instead 
of relying on the results of large  studies18.
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The present study had the advantage of access to a sizable data set of individual participant data collected 
from a large number of studies. The presence of heterogeneity was evident from preliminary analyses and later 
corroborated by graphical inspection of the prediction regions.

Conclusions
The use of prediction regions allowed us to shed light regarding previously unseen trends in the data. In the 
present analysis, the varying correlations between TPR and FPR as more studies were added to the model and 
across subgroups were of special interest as they had noticeable effects on the shape of the prediction regions. 
The present analysis used prediction regions to investigate heterogeneity in the study pool and revealed greater 
heterogeneity regarding TPR estimates as compared to FPR estimates. Prediction regions display the full range 
of variability in the data, which is essential for making predictions, and uncovering trends which may have been 
otherwise unknown to the researcher; thus, supporting the recommendation by authors of using prediction 
regions as the most adequate summary of the results of a meta-analysis.
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