173 research outputs found

    Critical care outcomes in patients with pre-existing pulmonary hypertension

    Get PDF

    Pregnancy in women with pulmonary hypertension

    Get PDF
    Women with pulmonary hypertension have a high risk of morbidity and mortality during pregnancy. The inability to increase cardiac output leads to heart failure while further risks are introduced with hypercoagulability and decrease in systemic vascular resistance. There is no proof that new advanced therapies for pulmonary hypertension decrease the risk, though some promising results have been reported. However, pregnancy should still be regarded as contraindicated in women with pulmonary hypertension. When pregnancy occurs and termination is declined, pregnancy and delivery should be managed by multidisciplinary services with experience in the management of both pulmonary hypertension and high-risk pregnancies

    Severe pulmonary hypertension associated with lung disease is characterised by a loss of small pulmonary vessels on quantitative computed tomography

    Get PDF
    Background: Pulmonary hypertension (PH) in patients with chronic lung disease (CLD) predicts reduced functional status, clinical worsening and increased mortality, with patients with severe PH-CLD (≥35 mmHg) having a significantly worse prognosis than mild to moderate PH-CLD (21-34 mmHg). The aim of this cross-sectional study was to assess the association between computed tomography (CT)-derived quantitative pulmonary vessel volume, PH severity and disease aetiology in CLD. Methods: Treatment-naïve patients with CLD who underwent CT pulmonary angiography, lung function testing and right heart catheterisation were identified from the ASPIRE registry between October 2012 and July 2018. Quantitative assessments of total pulmonary vessel and small pulmonary vessel volume were performed. Results: 90 patients had PH-CLD including 44 associated with COPD/emphysema and 46 with interstitial lung disease (ILD). Patients with severe PH-CLD (n=40) had lower small pulmonary vessel volume compared to patients with mild to moderate PH-CLD (n=50). Patients with PH-ILD had significantly reduced small pulmonary blood vessel volume, compared to PH-COPD/emphysema. Higher mortality was identified in patients with lower small pulmonary vessel volume. Conclusion: Patients with severe PH-CLD, regardless of aetiology, have lower small pulmonary vessel volume compared to patients with mild-moderate PH-CLD, and this is associated with a higher mortality. Whether pulmonary vessel changes quantified by CT are a marker of remodelling of the distal pulmonary vasculature requires further study

    Validation of methods for converting the original Disease Activity Score (DAS) to the DAS28

    Get PDF
    © The Author(s) 2018.The Disease Activity Score (DAS) is integral in tailoring the clinical management of rheumatoid arthritis (RA) patients and is an important measure in clinical research. Different versions have been developed over the years to improve reliability and ease of use. Combining the original DAS and the newer DAS28 data in both contemporary and historical studies is important for both primary and secondary data analyses. As such, a methodologically robust means of converting the old DAS to the new DAS28 measure would be invaluable. Using data from The Early RA Study (ERAS), a sub-sample of patients with both DAS and DAS28 data were used to develop new regression imputation formulas using the total DAS score (univariate), and using the separate components of the DAS score (multivariate). DAS were transformed to DAS28 using an existing formula quoted in the literature, and the newly developed formulas. Bland and Altman plots were used to compare the transformed DAS with the recorded DAS28 to ascertain levels of agreement. The current transformation formula tended to overestimate the true DAS28 score, particularly at the higher end of the scale. A formula which uses all separate components of the DAS was found to estimate the scores with a higher level of precision. A new formula is proposed that can be used by other early RA cohorts to convert the original DAS to DAS28.Peer reviewedFinal Published versio

    The illusion of competency versus the desirability of expertise: Seeking a common standard for support professions in sport

    Get PDF
    In this paper we examine and challenge the competency-based models which currently dominate accreditation and development systems in sport support disciplines, largely the sciences and coaching. Through consideration of exemplar shortcomings, the limitations of competency-based systems are presented as failing to cater for the complexity of decision making and the need for proactive experimentation essential to effective practice. To provide a better fit with the challenges of the various disciplines in their work with performers, an alternative approach is presented which focuses on the promotion, evaluation and elaboration of expertise. Such an approach resonates with important characteristics of professions, whilst also providing for the essential ‘shades of grey’ inherent in work with human participants. Key differences between the approaches are considered through exemplars of evaluation processes. The expertise-focused method, although inherently more complex, is seen as offering a less ambiguous and more positive route, both through more accurate representation of essential professional competence and through facilitation of future growth in proficiency and evolution of expertise in practice. Examples from the literature are also presented, offering further support for the practicalities of this approach

    CT derived left atrial size identifies left heart disease in suspected pulmonary hypertension: Derivation and validation of predictive thresholds

    Get PDF
    Background Patients with pulmonary hypertension due to left heart disease (PH-LHD) have overlapping clinical features with pulmonary arterial hypertension making diagnosis reliant on right heart catheterization (RHC). This study aimed to investigate computed tomography pulmonary angiography(CTPA) derived cardiopulmonary structural metrics, in comparison to magnetic resonance imaging (MRI) for the diagnosis of left heart disease in patients with suspected pulmonary hypertension. Methods Patients with suspected pulmonary hypertension who underwent CTPA, MRI and RHC were identified. Measurements of the cardiac chambers and vessels were recorded from CTPA and MRI. The diagnostic thresholds of individual measurements to detect elevated pulmonary arterial wedge pressure (PAWP) were identified in a derivation cohort (n = 235). Individual CT and MRI derived metrics were tested in validation cohort (n = 211). Results 446 patients, of which 88 had left heart disease. Left atrial area was a strong predictor of elevated PAWP>15 mm Hg and PAWP>18 mm Hg, area under curve (AUC) 0.854, and AUC 0.873 respectively. Similar accuracy was also identified for MRI derived LA volume, AUC 0.852 and AUC 0.878 for PAWP > 15 and 18 mm Hg, respectively. Left atrial area of 26.8 cm2 and 30.0 cm2 were optimal specific thresholds for identification of PAWP > 15 and 18 mm Hg, had sensitivity of 60%/53% and specificity 89%/94%, respectively in a validation cohort. Conclusions CTPA and MRI derived left atrial size identifies left heart disease in suspected pulmonary hypertension with high specificity. The proposed diagnostic thresholds for elevated left atrial area on routine CTPA may be a useful to indicate the diagnosis of left heart disease in suspected pulmonary hypertension

    Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements

    Get PDF
    BACKGROUND: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality

    Gene Expression of ANP, BNP and ET-1 in the Heart of Rats during Pulmonary Embolism

    Get PDF
    Aims: Atrial natriuretic petide (ANP), brain natriuretic peptide (BNP) and endothelin-1 (ET-1) may reflect the severity of right ventricular dysfunction (RVD) in patients with pulmonary embolism (PE). The exact nature and source of BNP, ANP and ET-1 expression and secretion following PE has not previously been studied. Methods and Results: Polystyrene microparticles were injected to induce PE in rats. Gene expression of BNP, ANP and ET-1 were determined in the 4 cardiac chambers by quantitative real time polymerase chain reaction (QPCR). Plasma levels of ANP, BNP, ET-1 and cardiac troponin I (TNI) were measured in plasma. PE dose-dependently increased gene expression of ANP and BNP in the right ventricle (RV) and increased gene expression of ANP in the right atrium (RA). In contrast PE dosedependently decreased BNP gene expression in both the left ventricle (LV) and the left atrium (LA). Plasma levels of BNP, TNI and ET-1 levels dose-dependently increased with the degree of PE. Conclusion: We found a close correlation between PE degree and gene-expression of ANP, and BNP in the cardiac chambers with a selective increase in the right chambers of the heart. The present data supports the idea of natriuretic peptides a
    corecore