68 research outputs found

    A common formula for the combined torsional mesh stiffness of spur gears

    Get PDF
    This paper presents the results of a detailed two-dimensional analysis of the torsional stiffness of several pairs of spur gears in mesh using finite element methods. The model on which this research is based allows the generation of pairs of spur gears in contact with several different parameters and includes an adaptive meshing algorithm for the contact zones. The FEA results from the various model settings are used to develop a common formula for the combined torsional stiffness of spur gears in mesh. The torsional mesh stiffness of gears in mesh consists of three main components which are the body, teeth and contact stiffnesses. The introduced formula uses these three parts to determine the stiffness for a wide range of gear and gear ratio combinations

    Investigation of inner contact and friction conditions of a spherical roller bearing using multi-body simulation

    Get PDF
    At the Institute of Machine Elements, Gears, and Transmission (MEGT, University of Kaiserslautern) a spherical roller bearing has been modeled in an multi body system (MBS) environment. The use of the commercial MBS (multi-body system) software (MSC ADAMS) allows the development of user-written subroutines for contact recognition and the calculation of contact forces. Those subroutines can help understanding the principles of friction phenomena inside spherical roller bearings, while the measurement of those effects is difficult.Measurements on a friction torque test rig for roller bearings are used to validate the MBS models. Since the sum of all contact forces equals the friction of the bearing, this test stand provides a way for validation of the contact and friction calculations

    Interventions to Promote Cancer Awareness and Early Presentation: Systematic Review

    Get PDF
    Low cancer awareness contributes to delay in presentation for cancer symptoms and may lead to delay in cancer diagnosis. The aim of this study was to review the evidence for the effectiveness of interventions to raise cancer awareness and promote early presentation in cancer to inform policy and future research. We searched bibliographic databases and reference lists for randomised controlled trials of interventions delivered to individuals, and controlled or uncontrolled studies of interventions delivered to communities. We found some evidence that interventions delivered to individuals modestly increase cancer awareness in the short term and insufficient evidence that they promote early presentation. We found limited evidence that public education campaigns reduce stage at presentation of breast cancer, malignant melanoma and retinoblastoma

    Advanced model for the calculation of meshing forces in spur gear planetary transmissions

    Get PDF
    This paper presents a planar spur gear planetary transmission model, describing in great detail aspects such as the geometric definition of geometric overlaps and the contact forces calculation, thus facilitating the reproducibility of results by fellow researchers. The planetary model is based on a mesh model already used by the authors in the study of external gear ordinary transmissions. The model has been improved and extended to allow for the internal meshing simulation, taking into consideration three possible contact scenarios: involute–involute contact, and two types of involute-tip rounding arc contact. The 6 degrees of freedom system solved for a single couple of gears has been expanded to 6 + 3n degrees of freedom for a planetary transmission with n planets. Furthermore, the coupling of deformations through the gear bodies’ flexibility has been also implemented and assessed. A step-by-step integration of the planetary is presented, using two typical configurations, demonstrating the model capability for transmission simulation of a planetary with distinct pressure angles on each mesh. The model is also put to the test with the simulation of the transmission error of a real transmission system, including the effect of different levels of external torque. The model is assessed by means of quasi-static analyses, and the meshing stiffness values are compared with those provided by the literature.The authors would like to acknowledge Project DPI2013-44860 funded by the Spanish Ministry of Science and Technology

    Analysis and Verification of Complex Robot Systems using Behaviour-Based Control

    No full text
    The development of autonomous mobile robots is a major topic of current research. As those robots must be able to react to changing environments and avoid collisions also with moving obstacles, the fulfilment of safety requirements is an important aspect. Behaviour-based systems (BBS) have proven to meet several of the properties required for these kindsof robots, such as reactivity, extensibility and re-usability of individual components. BBS consist of a number of behavioural components that individually realise simple tasks. Their interconnection allows to achieve complex robot behaviour, which implies that correct connections are crucial. The resulting networks can get very large making them difficult to verify. This dissertation presents a novel concept for the analysis and verification of complex autonomous robot systems controlled by behaviour-based software architectures with special focus on the integration of environmental aspects into the processes. Several analysis techniques have been investigated and adapted to the special requirements of BBS. These include a structural analysis, which is used to find constraint violations and faults in the network layout. Fault tree analysis is applied to identify root causes of hazards and the relationship of system events. For this, a technique to map the behaviour-based control network to the structure of a fault tree has been developed. Testing and data analysis are used for the detection of failures and their root causes. Here, a new concept that identifies patterns in data recorded during test runs has been introduced. All of these methods cannot guarantee failure-free and safe robot behaviour and can never prove the absence of failures. Therefore, model checking as formal verification technique that proves a property to be correct for the given system, has been chosen to complement the set of analysis techniques. A novel concept for the integration of environmental influences into the model checking process is proposed. Environmental situations and the sensor processing chain are represented as synchronised automata similar to the modelling of the behavioural network. Tools supporting the whole verification process including the creation of formal queries in its environment have been developed. During the verification of large behavioural networks, the scalability of the model checking approach appears as a big problem. Several approaches that deal with this problem have been investigated and the selection of slicing and abstraction methods has been justified. A concept for the application of these methods is provided, that reduces the behavioural network to the relevant parts before the actual verification process. All techniques have been applied to the behaviour-based control system of the autonomous outdoor robot RAVON. Its complex network with more than 400 components allows for demonstrating the soundness of the presented concepts. The set of different techniques provides a fundamental basis for a comprehensive analysis and verification of BBS acting in changing environments

    Analysis and Verification of Complex Robot Systems using Behaviour-Based Control

    Get PDF
    The development of autonomous mobile robots is a major topic of current research. As those robots must be able to react to changing environments and avoid collisions also with moving obstacles, the fulfilment of safety requirements is an important aspect. Behaviour-based systems (BBS) have proven to meet several of the properties required for these kindsof robots, such as reactivity, extensibility and re-usability of individual components. BBS consist of a number of behavioural components that individually realise simple tasks. Their interconnection allows to achieve complex robot behaviour, which implies that correct connections are crucial. The resulting networks can get very large making them difficult to verify. This dissertation presents a novel concept for the analysis and verification of complex autonomous robot systems controlled by behaviour-based software architectures with special focus on the integration of environmental aspects into the processes. Several analysis techniques have been investigated and adapted to the special requirements of BBS. These include a structural analysis, which is used to find constraint violations and faults in the network layout. Fault tree analysis is applied to identify root causes of hazards and the relationship of system events. For this, a technique to map the behaviour-based control network to the structure of a fault tree has been developed. Testing and data analysis are used for the detection of failures and their root causes. Here, a new concept that identifies patterns in data recorded during test runs has been introduced. All of these methods cannot guarantee failure-free and safe robot behaviour and can never prove the absence of failures. Therefore, model checking as formal verification technique that proves a property to be correct for the given system, has been chosen to complement the set of analysis techniques. A novel concept for the integration of environmental influences into the model checking process is proposed. Environmental situations and the sensor processing chain are represented as synchronised automata similar to the modelling of the behavioural network. Tools supporting the whole verification process including the creation of formal queries in its environment have been developed. During the verification of large behavioural networks, the scalability of the model checking approach appears as a big problem. Several approaches that deal with this problem have been investigated and the selection of slicing and abstraction methods has been justified. A concept for the application of these methods is provided, that reduces the behavioural network to the relevant parts before the actual verification process. All techniques have been applied to the behaviour-based control system of the autonomous outdoor robot RAVON. Its complex network with more than 400 components allows for demonstrating the soundness of the presented concepts. The set of different techniques provides a fundamental basis for a comprehensive analysis and verification of BBS acting in changing environments

    The Jail and the University: Make It Worth Their While

    No full text
    The article focuses on the effort of the American Jail Association to forge a strong relationship between the jail community and colleges in the U.S. The association hopes to augment jail staff with college-educated professionals in an effort to gain broader scholarly attention in the form of courses, textbooks, faculty and student research. The author believes that the task of the association to elicit and sustain academic interest in jail operation is a difficult, but not an impossible one
    • …
    corecore