158 research outputs found

    Chemotherapy-Induced Neuronal Maturation in Sinonasal Teratocarcinosarcoma—a Unique Observation

    Get PDF
    Sinonasal teratocarcinosarcoma (SNTCS) is a rare and highly malignant tumour with combined features of a teratoma and carcinosarcoma. We report the first case of a SNTCS in 23 year old male treated with neo-adjuvant chemotherapy followed by cranio-facial resection. The resection specimen displayed cellular maturation in the neuroectodermal component. The patient presented with a short history of nasal obstruction, epistaxis and headache. On imaging, a bone destroying lesion of left paranasal sinuses and nasal cavity was identified. The diagnosis of SNTCS could be offered only on the third biopsy which showed heterogeneous admixture of primitive neuroectodermal, epithelial and mesenchymal elements. An adequate sampling with high index of suspicion is needed to catch hold this rare tumor. Tumor was excised after 4 cycles of neo-adjuvant chemotherapy. On microscopic examination, it showed similar epithelial and mesenchymal components as the pretreatment biopsies. However, the primitive neuroectodermal component displayed extensive neuronal maturation. The undifferentiated neuroectodermal cells were completely absent in the post chemotherapy specimen. This case throws light on the morphologic evidence of chemotherapy induced maturation in the neuroectodermal component within SNTCS, an event hitherto not reported in the literature in case of SNTCS

    Enhancement of anti-STLV-1/HTLV-1 immune responses through multimodal effects of anti-CCR4 antibody.

    Get PDF
    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia and inflammatory diseases. Because anti-HTLV-1 immune responses are critical for suppressing infected cells, enhancing cellular immunity is beneficial for the treatment of HTLV-1-associated diseases. Using simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaques, we analyzed the immune responses to viral antigens and the dynamics of virus-infected cells. The chemokine receptor CCR4 is expressed on STLV-1 infected cells, and administration of humanized monoclonal antibody to CCR4, mogamulizumab, dramatically decreased the number of STLV-1-infected cells in vivo. Concurrently, mogamulizumab treatment enhanced STLV-1 specific CD4[+] and CD8[+] T cell responses by simultaneously targeting CCR4[+] effector regulatory T (Treg) cells and infected cells. Mogamulizumab promoted the phagocytosis of CCR4[+] infected cells by macrophages, which likely enhanced antigen presentation. Vaccination with recombinant vaccinia virus (rVV) expressing viral antigens suppressed the proviral load and the number of Tax-expressing cells. Enhanced T-cell responses were also observed in some ATL patients who were treated with mogamulizumab. This study shows that mogamulizumab works not only by killing CCR4[+] infected cells directly, but also by enhancing T cell responses by increasing the phagocytosis of infected cells by antigen-presenting cells and suppressing CCR4[+] effector Treg cells

    Stemness Evaluation of Mesenchymal Stem Cells from Placentas According to Developmental Stage: Comparison to Those from Adult Bone Marrow

    Get PDF
    This study was done to evaluate the stemness of human mesenchymal stem cells (hMSCs) derived from placenta according to the development stage and to compare the results to those from adult bone marrow (BM). Based on the source of hMSCs, three groups were defined: group I included term placentas, group II included first-trimester placentas, and group III included adult BM samples. The stemness was evaluated by the proliferation capacity, immunophenotypic expression, mesoderm differentiation, expression of pluripotency markers including telomerase activity. The cumulative population doubling, indicating the proliferation capacity, was significantly higher in group II (P<0.001, 31.7±5.8 vs. 15.7±6.2 with group I, 9.2±4.9 with group III). The pattern of immunophenotypic expression and mesoderm differentiation into adipocytes and osteocytes were similar in all three groups. The expression of pluripotency markers including ALP, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and telomerase were strongly positive in group II, but very faint positive in the other groups. In conclusions, hMSCs from placentas have different characteristics according to their developmental stage and express mesenchymal stemness potentials similar to those from adult human BMs

    Clinical Effects of Hypertension on the Mortality of Patients with Acute Myocardial Infarction

    Get PDF
    The incidence of ischemic heart disease has been increased rapidly in Korea. However, the clinical effects of antecedent hypertension on acute myocardial infarction have not been identified. We assessed the relationship between antecedent hypertension and clinical outcomes in 7,784 patients with acute myocardial infarction in the Korea Acute Myocardial Infarction Registry during one-year follow-up. Diabetes mellitus, hyperlipidemia, cerebrovascular disease, heart failure, and peripheral artery disease were more prevalent in hypertensives (n=3,775) than nonhypertensives (n=4,009). During hospitalization, hypertensive patients suffered from acute renal failure, shock, and cerebrovascular event more frequently than in nonhypertensives. During follow-up of one-year, the incidence of major adverse cardiac events was higher in hypertensives. In multi-variate adjustment, old age, Killip class ≥III, left ventricular ejection fraction <45%, systolic blood pressure <90 mmHg on admission, post procedural TIMI flow grade ≤2, female sex, and history of hypertension were independent predictors for in-hospital mortality. However antecedent hypertension was not significantly associated with one-year mortality. Hypertension at the time of acute myocardial infarction is associated with an increased rate of in-hospital mortality

    IL-22 Production Is Regulated by IL-23 During Listeria monocytogenes Infection but Is Not Required for Bacterial Clearance or Tissue Protection

    Get PDF
    Listeria monocytogenes (LM) is a gram-positive bacterium that is a common contaminant of processed meats and dairy products. In humans, ingestion of LM can result in intracellular infection of the spleen and liver, which can ultimately lead to septicemia, meningitis, and spontaneous abortion. Interleukin (IL)-23 is a cytokine that regulates innate and adaptive immune responses by inducing the production of IL-17A, IL-17F, and IL-22. We have recently demonstrated that the IL-23/IL-17 axis is required for optimal recruitment of neutrophils to the liver, but not the spleen, during LM infection. Furthermore, these cytokines are required for the clearance of LM during systemic infection. In other infectious models, IL-22 induces the secretion of anti-microbial peptides and protects tissues from damage by preventing apoptosis. However, the role of IL-22 has not been thoroughly investigated during LM infection. In the present study, we show that LM induces the production of IL-22 in vivo. Interestingly, IL-23 is required for the production of IL-22 during primary, but not secondary, LM infection. Our findings suggest that IL-22 is not required for clearance of LM during primary or secondary infection, using both systemic and mucosal models of infection. IL-22 is also not required for the protection of LM infected spleens and livers from organ damage. Collectively, these data indicate that IL-22 produced during LM infection must play a role other than clearance of LM or protection of tissues from pathogen- or immune-mediated damage

    Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In standard BLAST searches, no information other than the sequences of the query and the database entries is considered. However, in situations where two genes from different species have only borderline similarity in a BLAST search, the discovery that the genes are located within a region of conserved gene order (synteny) can provide additional evidence that they are orthologs. Thus, for interpreting borderline search results, it would be useful to know whether the syntenic context of a database hit is similar to that of the query. This principle has often been used in investigations of particular genes or genomic regions, but to our knowledge it has never been implemented systematically.</p> <p>Results</p> <p>We made use of the synteny information contained in the Yeast Gene Order Browser database for 11 yeast species to carry out a systematic search for protein-coding genes that were overlooked in the original annotations of one or more yeast genomes but which are syntenic with their orthologs. Such genes tend to have been overlooked because they are short, highly divergent, or contain introns. The key features of our software - called SearchDOGS - are that the database entries are classified into sets of genomic segments that are already known to be orthologous, and that very weak BLAST hits are retained for further analysis if their genomic location is similar to that of the query. Using SearchDOGS we identified 595 additional protein-coding genes among the 11 yeast species, including two new genes in <it>Saccharomyces cerevisiae</it>. We found additional genes for the mating pheromone a-factor in six species including <it>Kluyveromyces lactis</it>.</p> <p>Conclusions</p> <p>SearchDOGS has proven highly successful for identifying overlooked genes in the yeast genomes. We anticipate that our approach can be adapted for study of further groups of species, such as bacterial genomes. More generally, the concept of doing sequence similarity searches against databases to which external information has been added may prove useful in other settings.</p

    Population biology of malaria within the mosquito: density-dependent processes and potential implications for transmission-blocking interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combined effects of multiple density-dependent, regulatory processes may have an important impact on the growth and stability of a population. In a malaria model system, it has been shown that the progression of <it>Plasmodium berghei </it>through <it>Anopheles stephensi </it>and the survival of the mosquito both depend non-linearly on parasite density. These processes regulating the development of the malaria parasite within the mosquito may influence the success of transmission-blocking interventions (TBIs) currently under development.</p> <p>Methods</p> <p>An individual-based stochastic mathematical model is used to investigate the combined impact of these multiple regulatory processes and examine how TBIs, which target different parasite life-stages within the mosquito, may influence overall parasite transmission.</p> <p>Results</p> <p>The best parasite molecular targets will vary between different epidemiological settings. Interventions that reduce ookinete density beneath a threshold level are likely to have auxiliary benefits, as transmission would be further reduced by density-dependent processes that restrict sporogonic development at low parasite densities. TBIs which reduce parasite density but fail to clear the parasite could cause a modest increase in transmission by increasing the number of infectious bites made by a mosquito during its lifetime whilst failing to sufficiently reduce its infectivity. Interventions with a higher variance in efficacy will therefore tend to cause a greater reduction in overall transmission than a TBI with a more uniform effectiveness. Care should be taken when interpreting these results as parasite intensity values in natural parasite-vector combinations of human malaria are likely to be significantly lower than those in this model system.</p> <p>Conclusions</p> <p>A greater understanding of the development of the malaria parasite within the mosquito is required to fully evaluate the impact of TBIs. If parasite-induced vector mortality influenced the population dynamics of <it>Plasmodium </it>species infecting humans in malaria endemic regions, it would be important to quantify the variability and duration of TBI efficacy to ensure that community benefits of control measures are not overestimated.</p

    A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori

    Get PDF
    In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence
    corecore