32 research outputs found

    The first search for bosonic super-WIMPs with masses up to 1 MeV/c2^2 with GERDA

    Get PDF
    We present the first search for bosonic super-WIMPs as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-beta decay experiment which operates high-purity germanium detectors enriched in 76^{76}Ge in an ultra-low background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c2^2 to 1 MeV/c2^2. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c2^2 have been set. As an example, at a mass of 150 keV/c2^2 the most stringent direct limits on the dimensionless couplings of axion-like particles and dark photons to electrons of gae<31012g_{ae} < 3 \cdot 10^{-12} and α/α<6.51024{\alpha'}/{\alpha} < 6.5 \cdot 10^{-24} at 90% credible interval, respectively, were obtained.Comment: 6 pages, 3 figures, submitted to Physical Review Letters, added list of authors, updated ref. [21

    Calibration of the Gerda experiment

    Get PDF
    The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double-β decay in 76Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Qββ= 2039.061 (7) keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double-β decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular 228Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years

    Search for tri-nucleon decays of ^{76}Ge in GERDA

    Get PDF
    We search for tri-nucleon decays of 76Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to 73Cu, 73Zn, and 73Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of 73Ga to 73Ge (stable). We search for the 73Ga decay exploiting the fact that it dominantly populates the 66.7 keV 73mGa state with half-life of 0.5 s. The nnn-decays of 76Ge that proceed via 73mGe are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2×1026 yr  (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude

    Final Results of GERDA on the Search for Neutrinoless Double-β\beta Decay

    Get PDF
    The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β\beta (0νββ0\nu\beta\beta) decay of 76^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in 76^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×1045.2\times10^{-4} counts/(keV\cdotkg\cdotyr) in the signal region and met the design goal to collect an exposure of 100 kg\cdotyr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg\cdotyr of total exposure. A limit on the half-life of 0νββ0\nu\beta\beta decay in 76^{76}Ge is set at T1/2>1.8×1026T_{1/2}>1.8\times10^{26} yr at 90% C.L., which coincides with the sensitivity assuming no signal.Comment: 7 pages, 3 figures, submitted to Physical Review Letter

    Characterization of inverted coaxial 76 Ge detectors in GERDA for future double- β decay experiments

    Get PDF
    Neutrinoless double-β decay of 76Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double-β decay of 76Ge (Qββ = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg⋅year, the background index after analysis cuts is measured to be 4.9+7.3−3.4×10−4 counts/(keV⋅kg⋅year) around Qββ. This work confirms the feasibility of IC detectors for the next-generation experiment Legend

    Characterization of inverted coaxial 76^{76}Ge detectors in GERDA for future double-β\beta decay experiments

    Get PDF
    Neutrinoless double-β\beta decay of 76^{76}Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in 76^{76}Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the GERDA setup. The measured resolutions at the Q-value for double-β\beta decay of 76^{76}Ge (Qββ_{\beta\beta} = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (GERDA) experiment and an accumulated exposure of 8.5 kg\cdotyr, the background index after analysis cuts is measured to be 4.93.4+7.3×1044.9^{+7.3}_{-3.4}\times 10^{-4} counts /(keV\cdotkg\cdotyr) around Qββ_{\beta\beta}. This work confirms the feasibility of IC detectors for the next-generation experiment LEGEND.Comment: 13 pages, 12 figures, submitted to EPJ

    Pulse shape analysis in GERDA Phase II

    Get PDF
    The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-\beta decay in ^{76}Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011–2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015–2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular ^{228}Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in GERDA Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around Q_{\beta \beta }= 2039 keV, while preserving (81\pm 3)% of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis

    Final Results of GERDA on the Search for Neutrinoless Double-β Decay

    Get PDF
    The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β (0νββ) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg yr of total exposure. A limit on the half-life of 0νββ decay in ^{76}Ge is set at T_{1/2}>1.8×10^{26}  yr at 90% C.L., which coincides with the sensitivity assuming no signal
    corecore