30 research outputs found

    2MASSJ22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse

    Full text link
    Context: The SW Sex stars are assumed to represent a distinguished stage in CV evolution, making it especially important to study them. Aims: We discovered a new cataclysmic star and carried out prolonged and precise photometric observations, as well as medium-resolution spectral observations. Modelling these data allowed us to determine the psysical parameters and to establish its peculiarities. Results: The newly discovered vataclysmic variable 2MASSJ22560844+5954299 shows the deepest eclipse amongst the known nova-like stars. It was reproduced by totally covering a very luminous accretion disk by a red secondary component. The temperature distribution of the disk is flatter than that of steady-state disk. The target is unusual with the combination of a low mass ratio q~1.0 (considerably below the limit q=1.2 of stable mass transfer of CVs) and an M-star secondary. The intensity of the observed three emission lines, H_alpha, He 5875, and He 6678, sharply increases around phase 0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of eclipses of the emission lines and their single-peaked profiles means that they originate mainly in a vertically extended hot-spot halo. The emission H_alpha line reveals S-wave wavelength shifts with semi-amplitude of around 210 km/s and phase lag of 0.03. Conclusions: The non-steady-state emission of the luminous accretion disk of 2MASSJ22560844+5954299 was attributed to the low viscosity of the disk matter caused by its unusually high temperature. The star shows all spectral properties of an SW Sex variable apart from the 0.5 central absorption.Comment: Accepted for publication in Astronomy & Astrophysics. 12 pages, 11 figures, 6 table

    The structure of cool accretion disc in semidetached binaries

    Full text link
    We present the results of qualitative consideration of possible changes occurring during the transition from the hot accretion disc to the cool one. We argue the possible existence of one more type of spiral density waves in the inner part of the disc where gasdynamical perturbations are negligible. The mechanism of formation of such a wave as well as its parameters are considered. We also present the results of 3D gasdynamical simulation of cool accretion discs. These results confirm the hypothesis of possible formation of the spiral wave of a new, "precessional" type in the inner regions of the disc. Possible observational manifestations of this wave are discussed.Comment: LaTeX, 16 pages, 8 figures, to be published in Astron. Z

    A Multi-Wavelength, Multi-Epoch Study of the Soft X-Ray Transient Prototype, V616 Mon (A0620-00)

    Get PDF
    We have obtained optical and infrared photometry of the soft x-ray transient prototype V616 Mon (A0620-00). From this photometry, we find a spectral type of K4 for the secondary star in the system, which is consistent with spectroscopic observations. We present J-, H-, and K-band light curves modeled with WD98 and ELC. Combining detailed, independently run models for ellipsoidal variations due to a spotted, non-spherical secondary star, and the observed ultraviolet to infrared spectral energy distribution of the system, we show that the most likely value for the orbital inclination is 40.75 +/- 3 deg. This inclination angle implies a primary black hole mass of 11.0 +/- 1.9 solar masses.Comment: 29 pages (preprint format), including 7 figures and 4 tables, accepted for publication in the Nov 2001 issue of A

    Quasi-Periodic Occultation by a Precessing Accretion Disk and Other Variabilities of SMC X-1

    Full text link
    We have investigated the variability of the binary X-ray pulsar, SMC X-1, in data from several X-ray observatories. We confirm the ~60-day cyclic variation of the X-ray flux in the long-term monitoring data from the RXTE and CGRO observatories. X-ray light curves and spectra from the ROSAT, Ginga, and ASCA observatories show that the uneclipsed flux varies by as much as a factor of twenty between a high-flux state when 0.71 second pulses are present and a low-flux state when pulses are absent. In contrast, during eclipses when the X-rays consist of radiation scattered from circumsource matter, the fluxes and spectra in the high and low states are approximately the same. These observations prove that the low state of SMC X-1 is not caused by a reduction in the intrinsic luminosity of the source, or a spectral redistribution thereof, but rather by a quasi-periodic blockage of the line of sight, most likely by a precessing tilted accretion disk. In each of two observations in the midst of low states a brief increase in the X-ray flux and reappearance of 0.71 second pulses occurred near orbital phase 0.2. These brief increases result from an opening of the line of sight to the pulsar that may be caused by wobble in the precessing accretion disk. The records of spin up of the neutron star and decay of the binary orbit are extended during 1991-1996 by pulse-timing analysis of ROSAT, ASCA, and RXTE PCA data. The pulse profiles in various energy ranges from 0.1 to >21 keV are well represented as a combination of a pencil beam and a fan beam. Finally, there is a marked difference between the power spectra of random fluctuations in the high-state data from the RXTE PCA below and above 3.4 keV. Deviation from the fitted power law around 0.06 Hz may be QPO.Comment: Accepted to ApJ. 33 pages including 11 figure

    Optical spectroscopy of flares from the black hole X-ray transient A0620-00 in quiescence

    Get PDF
    We present a time-resolved spectrophotometric study of the optical variability in the quiescent soft X-ray transient A0620-00. Superimposed on the double-humped continuum lightcurve are the well known flare events which last tens of minutes. Some of the flare events that appear in the continuum lightcurve are also present in the emission line lightcurves. From the Balmer line flux and variations, we find that the persistent emission is optically thin. During the flare event at phase 1.15 the Balmer decrement dropped suggesting either a significant increase in temperature or that the flares are more optically thick than the continuum. The data suggests that there are two HI emitting regions, the accretion disc and the accretion stream/disc region, with different Balmer decrements. The orbital modulation of Hα\alpha with the continuum suggests that the steeper decrement is most likely associated with the stream/disc impact region. We construct Doppler images of the Hα\alpha and Hβ\beta emission lines. Apart from showing enhanced blurred emission at the region where the stream impacts the accretion disc, the maps also show significant extended structure from the opposite side of the disc. The trailed spectra show characteristic S-wave features that can be interpreted in the context of an eccentric accretion disc (abridged).Comment: 13 pages, 10 Figures, accepted my MNRA

    Neutron stars and black holes in binary systems

    Full text link
    corecore