6 research outputs found

    Hybrid Systems of Soft Computing Technologies in Designing Team Decision for Supply Chain Management Systems of Organizations

    Get PDF
    Abstract—The main objective is development of hybrid systems for adaptive designing and supply chain management / strategizing of team decision “packages” for design work based on the use of soft computing technologies and system-creative thinking (SCT). An algorithm is proposed, and the results of case studies on predicting the effectiveness and optimal organization of team thinking, as well as designing team solutions using the technical package of social technologies are presented. They are exemplified by developing a system of products and marketing channels (points of contact) of an employer brand (EB) of an organization for individual stakeholder groups. An algorithm has been developed for using a system of hybrid “soft computing” technologies and system-creative thinking in supply chain process of project teamwork; practical calculations have been carried out using this algorithm. The algorithm and systems of models for using “soft computing” for supply chain developed allow us to obtain a synergistic effect from controlling a system of hybrid technologies at various stages of teamwork. The package includes a “basic” technology comprising “training teams”, and also the formation of a KPI system that characterize team work (units 1 and 2), “product” technologies comprising analysis of team organization thinking, forecasting team performance, team productivity management, as well as supply chain management of project (units 4, 5, 6), and also “closing” technology being a strategizing (adaptive management) of team work (dynamic control of the algorithm as a whole)

    Catalytic hydrotreatment of fast pyrolysis liquids in batch and continuous set-ups using a bimetallic Ni-Cu catalyst with a high metal content

    Get PDF
    In this paper, an experimental study on the hydrotreatment of fast pyrolysis liquids is reported in both batch and continuous set-ups using a novel bimetallic Ni-Cu based catalyst with high Ni loading (up to 50%) prepared by a sol-gel method. The experiments were carried out in a wide temperature range (80-410 degrees C) and at a hydrogen pressure between 100-200 bar to determine product properties and catalyst performance as a function of process conditions. To gain insight into the molecular transformations, the product oils were analysed by GC x GC, H-1-NMR and GPC and reveal that the sugar fraction is reactive in the low temperature range (300 degrees C). In addition, the organic acids are very persistent and reactivity was only observed above 350 degrees C. The results are rationalized using a reaction network involving competitive hydrogenation of reactive aldehydes and ketones of the sugar fraction of fast pyrolysis liquids and thermal polymerisation. In addition, relevant macro-properties of the product oils including flash point (30 to 80 degrees C), viscosity (0.06 to 0.93 Pa s) and TG residue

    Mono-, bi-, and tri-metallic Ni-based catalysts for the catalytic hydrotreatment of pyrolysis liquids

    Get PDF
    Catalytic hydrotreatment is a promising technology to convert pyrolysis liquids into intermediates with improved properties. Here, we report a catalyst screening study on the catalytic hydrotreatment of pyrolysis liquids using bi- and tri-metallic nickel-based catalysts in a batch autoclave (initial hydrogen pressure of 140 bar, 350 A degrees C, 4 h). The catalysts are characterized by a high nickel metal loading (41 to 57 wt%), promoted by Cu, Pd, Mo, and/or combination thereof, in a SiO2, SiO2-ZrO2, or SiO2-Al2O3 matrix. The hydrotreatment results were compared with a benchmark Ru/C catalyst. The results revealed that the monometallic Ni catalyst is the least active and that particularly the use of Mo as the promoter is favored when considering activity and product properties. For Mo promotion, a product oil with improved properties viz. the highest H/C molar ratio and the lowest coking tendency was obtained. A drawback when using Mo as the promoter is the relatively high methane yield, which is close to that for Ru/C. H-1, C-13-NMR, heteronuclear single quantum coherence (HSQC), and two-dimensional gas chromatography (GC x GC) of the product oils reveal that representative component classes of the sugar fraction of pyrolysis liquids like carbonyl compounds (aldehydes and ketones and carbohydrates) are converted to a large extent. The pyrolytic lignin fraction is less reactive, though some degree of hydrocracking is observed

    Hydrotreatment of the carbohydrate-rich fraction of pyrolysis liquids using bimetallic Ni based catalyst:Catalyst activity and product property relations

    Get PDF
    The use of novel nickel based catalysts for the catalytic hydrotreatment of pyrolytic sugars, the carbohydrate rich fraction of pine derived pyrolysis liquids, is reported. The catalysts are characterized by a high nickel loading (38 to 57 wt%), promoted by Cu, Pd, and/or Mo and a SiO2 based inorganic matrix. Experiments were carried out at 180 degrees C and 120 bar initial hydrogen pressure (room temperature) in a batch reactor set-up to gain insight in catalyst activity and product properties as a function of the catalyst composition. The most promising catalyst in terms of activity, as measured by the hydrogen uptake during reaction, was the Ni-Mo/SiO2-Al2O3 catalyst whereas the performance of the monometallic Ni/SiO2-Al2O3 catalyst was the lowest. As a result, the product oil obtained by the bimetallic Ni-Mo catalyst showed the highest H/C ratio and the lowest molecular weight of all catalysts tested. A detailed catalyst characterization study revealed that addition of Mo to the Ni catalyst suppresses the agglomeration of nickel nanoparticles during the catalytic hydrotreatment reaction
    corecore