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A B S T R A C T

The use of novel nickel based catalysts for the catalytic hydrotreatment of pyrolytic sugars, the carbohydrate-
rich fraction of pine derived pyrolysis liquids, is reported. The catalysts are characterized by a high nickel
loading (38 to 57 wt%), promoted by Cu, Pd, and/or Mo and a SiO2 based inorganic matrix. Experiments were
carried out at 180 °C and 120 bar initial hydrogen pressure (room temperature) in a batch reactor set-up to gain
insight in catalyst activity and product properties as a function of the catalyst composition. The most promising
catalyst in terms of activity, as measured by the hydrogen uptake during reaction, was the Ni-Mo/SiO2-Al2O3

catalyst whereas the performance of the monometallic Ni/SiO2-Al2O3 catalyst was the lowest. As a result, the
product oil obtained by the bimetallic Ni-Mo catalyst showed the highest H/C ratio and the lowest molecular
weight of all catalysts tested. A detailed catalyst characterization study revealed that addition of Mo to the Ni
catalyst suppresses the agglomeration of nickel nanoparticles during the catalytic hydrotreatment reaction.

1. Introduction

Lignocellulosic biomass has been identified as a renewable resource
for the production of transportation fuels and biobased chemicals [1,2].
However, biomass logistics are complex and expensive and as such
there is a strong incentive to develop cost effective technologies for the
densification/liquefaction of biomass. Fast pyrolysis is such a promising
technology as it converts lignocellulosic biomass into a vapor phase
which is subsequently condensed to obtain a pyrolysis liquid at rela-
tively mild temperatures (450–600 °C) [3,4]. Liquid yields of 70 to 80%
on dry biomass input have been reported. However, the pyrolysis li-
quids are rather acidic (pH usually around 3) [5]. The presence of acids
and other reactive oxygenated functional groups renders the liquids
relatively polar, and non-miscible with hydrocarbons. Furthermore,
thermal stability is limited due to repolymerization of reactive organic
compounds [5]. In addition, the energy density is typically< 50% of
that of conventional oils due to the presence of water (15–30%) and
oxygenates (typical oxygen contents are between 35 and 40%) [6].

Catalytic hydrotreatment has shown to be an attractive technology
to obtain stabilized pyrolysis liquids with a tunable oxygen content

[5,7]. Various metal-support combinations have been applied either
using pyrolysis liquids as such or in combination with a solvent. Early
studies on the hydrotreatment of pyrolysis liquids involved the use of
conventional hydrodesulfurization catalysts, e.g. sulfided NiMo and
CoMo on γ-Al2O3, and allowing for for the production of fully deox-
ygenated products [8]. However, these catalysts have some drawbacks
such as (i) the requirement of high temperatures (up to 400 °C), (ii)
significant deactivation under the harsh conditions and (iii) require-
ment of the presence of S for good performance. Noble metal catalysts
were also tested extensively (Ru, Pd, Pt, Rh on various supports, e.g.
Al2O3, TiO2, active carbon, ZrO2, etc.) [9,10]. Among these, Ru/C was
found to be superior to the classical hydrotreating catalysts with respect
to oil yield (up to 60 wt%), though deep deoxygenation in a single step
proved not possible [10].

In previous studies on the catalytic hydrotreatment of pyrolysis li-
quids using a Ru/C catalyst [5], various parallel and consecutive re-
actions were proposed to explain the product portfolio after the hy-
drotreatment reaction (Scheme 1). At relatively low temperatures, the
desired hydro-(deoxy)genation and undesired thermal, non-catalyzed
polymerization reactions occur in parallel. The latter route ultimately
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leads to char, thus lowering the carbon efficiency of the process and
causing operational issues.

It is generally assumed that the sugar fraction of pyrolysis liquids,
which is known to contain among others acetol, glycolaldehyde, fur-
fural, furanone, levoglucosan and oligomeric (dehydrated) carbohy-
drates, is prone to thermal polymerization reactions leading to char (top
route in Scheme 1) [5]. Efficient hydrogenation of this sugar fraction
into more stable components, e.g. aldehydes and ketones to alcohols
and sugars to sugar alcohols, is thus expected to reduce char formation.
Experimental studies on related processes have indeed confirmed this
statement. For instance, Vispute and et al. [11] reported bio-aromatics
production from the sugar fraction of pyrolysis liquids using zeolite
catalysts. Coke formation was considerably reduced (from 32.3 down to
12.6%) and aromatics yields increased (from 8.2 up to 21.6%) by first
applying a low temperature hydrogenation step of the water soluble
phase of the pyrolysis liquids using Ru/C or Pt/C catalysts. Vispute and
et al. [12] also reported alkane production from the aqueous phase
processing of pyrolysis liquids and showed that prior hydrogenation of
the water soluble phase of the pyrolysis liquids at 175 °C using a Ru/C
catalyst considerably increased the selectivity to alkanes from 42 to
85%.

Recently, a new series of non-noble metal based catalysts was in-
troduced by our groups for the hydrotreatment of pyrolysis liquids [13].
These catalysts are Ni-based, prepared by as sol-gel method and pro-
moted by among others Cu or Pd, and show clear advantages compared
to Ru/C such as (i) low methane formation rates, limiting the con-
sumption of (expensive) hydrogen and (ii) reduced rates of char for-
mation [13]. Ni based catalysts for the catalytic hydrotreatment of
pyrolysis liquids have also been reported by other groups [14–17].

As mentioned earlier, primarily the sugar fraction is assumed to be
responsible for repolymerization reactions leading to char, which
makes it obvious that this fraction should be treated first, and pre-
ferably at low temperature (< 180 °C), to obtain a higher quality
product oil. We here report the catalytic hydrotreatment of specifically
the sugar fraction of pyrolysis liquids over Ni based catalysts with
various Ni contents (38–57 wt%), promoters (Pd, Cu and Mo) on a SiO2

based matrix. A monometallic Ni catalyst was used as a reference cat-
alyst to gain insights in promotor effects.

All experiments were performed using an isolated sugar fraction
(pyrolytic sugar) from a representative pyrolysis liquid as the starting
material at 180 °C, 120 bar H2 for 4 h in a batch reactor. These condi-
tions are based on earlier studies from our group on the catalytic hy-
drotreatment of pyrolysis liquids [5,10,13]. The best catalysts were
characterized using a wide range of techniques before and after reac-
tion. Relevant properties of the hydrotreated products such as ele-
mental composition, water content and molecular weight distribution

were determined to evaluate catalyst performance.

2. Experimental section

2.1. Materials

The pyrolytic sugar (PS) fraction, obtained from a pine derived
pyrolysis liquid, was supplied by the Biomass Technology Group (BTG,
Enschede, the Netherlands). The PS fraction was prepared by the ad-
dition of water to the pyrolysis liquid, leading to the formation of a
viscous oil phase (pyrolytic lignin) and a separate water phase. The
water phase was taken and subjected to an evaporation step (75 °C,
100 mbar, till vapor formation ceased) to remove most of the water.
The remaining viscous liquid was used for the experiments, and re-
levant properties are given in Table 1.

Hydrogen, nitrogen and helium were obtained from Linde and were
all of analytical grade (> 99.99%). A reference gas containing H2, CH4,
ethylene, ethane, propylene, propane, CO and CO2 with known
amounts for gas phase calibration was purchased from Westfalen AG,
Münster, Germany.

H2SO4 (98%) from Merck, glycolaldehyde dimer (crystalline), glu-
cose (≥99.5%), mannose (≥99%), xylose (≥99%), arabinose
(≥99%), tetrahydrofuran (THF, anhydrous), di-n-butyl ether (DBE,
anhydrous, 99.3%) were purchased from Sigma-Aldrich and used
without further purification, levoglucosan was supplied from
Carbosynth, UK and used as received.

2.2. Catalyst synthesis and composition

All catalysts were prepared using a sol-gel method according to a
procedure given by Bykova et al. [18–21]. Catalyst compositions (in
oxidized state) are presented in Table 2. The catalysts were crushed to
25–75 μm and reduced in situ for 1 h at the temperatures specified in
Table 2 before use.

2.3. Experimental procedures

2.3.1. Catalytic hydrotreatment of the pyrolytic sugars in a batch autoclave
Experiments were performed in a 100 mL autoclave (Parr) equipped

with an overhead stirrer. Prior to an experiment, the reactor was
charged with 1.25 g of catalyst (5 wt% with respect to pyrolytic sugar)
and the reactor was pressurized to 100 bar of N2 to check for leakage.

Scheme 1. Proposed reaction pathway for the catalytic hydrotreatment of pyrolysis liquids over Ru/C [5].

Table 1
Relevant properties of the pyrolytic sugars used in this study.

Water content (wt%) 14.46
Elemental composition (dry basis, wt%)
C 50.80
H 6.35
O (by difference) 42.85
N < 0.01

Table 2
Summary of the catalysts used in this study.a

Code Metal loading, wt% Support, wt% Reduction
temperature (°C)

Ni Cu Mo Pd SiO2 Al2O3 ZrO2

Ni 48 − − − 15.5 24 − 400
Ni-Cu 46 5 − − 25 − 10.7 350
Ni-Pd 57 − − 0.7 26 − − 350
Ni-Pd-Cu 54 8.2 − 0.7 21 − − 350
Ni-Mo 41 − 7.4 − 13.3 24 − 400
Ni-Mo-Cu 38 3.8 5.9 − 10.8 24 − 400

a In oxidized form.
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The catalyst was then activated by applying 20–30 bar H2 at a tem-
perature of 350–400 °C (see Table 2) for 1 h, after which the reactor
was cooled to room temperature and 25.0 g of PS was injected to the
reactor from a feed vessel using pressurized nitrogen gas. The reactor
was flushed 3 times with 10 bar of hydrogen to remove any remaining
air/oxygen, and was subsequently pressurized with hydrogen to
120 bar at room temperature. Finally, the reactor content was heated
up to 180 °C with a heating rate of 10 °C/min. The reactor was kept at
180 °C for 4 h while stirring at 1400 rpm and subsequently cooled to
ambient temperature. The pressure in the reactor was determined and
the gas phase was sampled using a 3 L gas bag. The liquid and solid
product (mainly spent catalyst) were collected after reaction and
transferred to a centrifuge tube. Both phases were separated by cen-
trifugation (4500 rpm, 30 min) and collected and weighted. The reactor
was thoroughly rinsed with acetone. The acetone was evaporated (in air
at room temperature), and the resulting product was weighted and
added to the liquid phase for mass balance calculation. The suspension
was combined with the solid residue in the centrifuge tube, filtered over
a paper filter, washed with acetone and water, further dried at 100 °C
until constant weight. The amount of char formed is defined as the
amount of solid residue minus the original catalyst intake. The amount
of gas phase components after reaction was determined by the pressure
difference in the reactor before and after reaction at room temperature
using the ideal gas law in combination with the measured composition
of the gas phase by GC. It is assumed that the volume of the gas hold-up
in the reactor before and after reaction is equal. For non-catalytic runs,
the pyrolytic sugar was heated in the reactor to 180 °C for 4 h under
120 bar of N2 gas and samples of the liquid and solid phase after re-
action were collected using the same methodology as for the catalytic
runs.

2.3.2. Analysis of gas- and liquid phase
2.3.2.1. GC-TCD. The composition of the gas phase after reaction was
determined by GC-TCD. A Hewlett Packard 5890 Series II GC equipped
with a CP Poraplot Q Al2O3/Na2SO4 column (50 m × 0.5 mm, film
thickness 10 μm) and a CP-Molsieve 5 Å column (25 m × 0.53 mm,
film thickness 50 μm) was used. The injector temperature was set at
150 °C, the detector temperature at 90 °C. The oven temperature was
kept at 40 °C for 2 min, then heated up to 90 °C at 20 °C/min and kept
at this temperature for 2 min. Helium was used as the carrier gas. The
columns were flushed for 30 s with reference and sample gas before
starting the measurement. A reference gas containing H2, CH4, CO, CO2,
ethylene, ethane, propylene and propane with known composition was
used for peak identification and quantification.

2.3.2.2. Determination of the composition of the pyrolytic sugar. The
composition and particularly the amounts of monomeric and
oligomeric sugars were determined using a hydrolysis method [22]. A
glass pressure tube was filled with 100 mL of a 500 mM sulphuric acid
(98%) solution in water and 1.0 g of pyrolytic sugar. The tube was
closed and placed in an oven at the preset temperature (80 and 120 °C)
for 24 h. After reaction, the content was cooled to room temperature,
the solution was filtered and analyzed using HPLC. The HPLC was
equipped with a Hewlett Packard 1050 pump, a Bio-Rad organic acid
column (Aminex HPX-87H) and a differential refractometer. The
mobile phase consisted of an aqueous solution of sulfuric acid
(5 mmol/L) using a flow rate of 0.55 cm3/min. The column was
operated at 60 °C. Quantification of the various products was
performed using calibration curves obtained from standard solutions
of known concentrations. The amounts of levoglucosan and
glycolaldehyde in the pyrolytic sugar fraction were quantified
without the hydrolysis step by direct injection of the diluted pyrolytic
sugars solution.

2.3.2.3. Calculation of the hydrogen consumption in a batch reaction. The
H2 consumption for each batch experiment was calculated according a

literature method [23,24]. It is based on the initial pressure,
temperature and composition of the gas phase before and after the
reaction. In these calculations, it is assumed that the volume of the gas
phase in the reactor is constant and that the ideal gas law is applicable.
The initial number of moles of H2 in the reactor is given by:

=

⋅

⋅

n
V P

R TH initial
gas cap initial

initial
,2 (1)

where nH2
, initial is the initial amount of hydrogen (in moles) in the

reactor, Vgas cap is the volume of the reactor that is not occupied by the
liquid, Pinitial is initial pressure in the reactor (in room temperature), R is
gas constant, and Tinitial is the initial temperature in the reactor (room
temperature).

After reaction, the reactor was cooled to room temperature and the
pressure was recorded. In combination with the known composition of
the gas phase (GC-TCD), the amount of hydrogen at the end of the re-
action is given by:

= ×

⋅

⋅

n y
V P

R TH final H final
gas cap final

final
, ,2 2 (2)

where nH2
,final is the amount of hydrogen uptake (in moles) in the

reactor after the reaction, yH2
,final is the mole fraction of the hydrogen

in the gas cap after reaction (as measured by GC-TCD), Vgas cap is the
volume of the reactor that is not occupied by the liquid, Pfinal is the
pressure in the reactor after the reaction (measured in room tempera-
ture), R is gas constant, Tfinal is the final temperature in the reactor
(room temperature).

The hydrogen uptake per kg feed was calculated using Eq. (3).

=

−
⋅

H consumption
n n

m

( ).H initial H final
R

PS initial
2

, ,
298K

1 atm

,

2 2

(3)

where H2 consumption is the hydrogen uptake (in NL per kg dry feed),
nH2

, initial is the initial amount of hydrogen (in moles) in the reactor,
nH2

,final is the amount of hydrogen uptake (in moles) in the reactor
after the reaction, R is gas constant, mPS, initial is the mass of the pyrolytic
sugar fraction fed to the reactor.

2.3.2.4. Elemental analysis. The elemental composition of the pyrolytic
sugar feed and the product oils were analyzed using a EuroVector
EA3400 Series CHNS-O analyzer with acetanilide as the reference. The
oxygen content was determined by difference. All analyses were carried
out at least in duplicate and the average value is reported.

2.3.2.5. Water content. The water content of the pyrolytic sugar feeds
and the product oils were determined using a Karl-Fischer (Metrohm
702 SM Titrino) titration. About 0.01 g of sample was introduced to an
isolated glass chamber containing Hydranal solvent (Riedel de Haen) by
a 1 mL syringe. The titration was carried out using Hydranal titrant 5
(Riedel de Haen). Mili-Q water was assumed as water content 100%
used to calibrate the results of titration. All analyses were carried out at
least in duplicate and the average value is reported.

2.3.2.6. Gel permeation chromatography (GPC). GPC analyses of the
organic products were performed using an Agilent HPLC 1100 system
equipped with a refractive index detector. Three columns in series of
mixed type E (length 300 mm, i.d. 7.5 mm) were used. Polystyrene was
used as a calibration standard. 0.05 g of the organic phase was
dissolved in 5 mL of THF (10 mg/mL) together with 2 drops of
toluene as the marker and filtered (pore size 0.2 μm) before injection.

2.3.2.7. Thermogravimetric analysis (TGA). TGA analysis of the
pyrolytic sugar feeds, the product oils and spent catalysts were
determined using a TGA 7 from Perkin-Elmer. The samples were
heated in a nitrogen atmosphere with a heating rate 10 °C/min and a
temperature range between 20 and 900 °C.
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2.3.2.8. Gas chromatography/mass spectrometry (GC–MS). GC–MS
analyses of the liquid products were performed on a Hewlett-Packard
5890 gas chromatograph equipped with a quadrupole Hewlett-Packard
6890 MSD selective detector and a 30 m × 0.25 mm, i.d. and 0.25 μm
film sol-gel capillary column. The injector temperature was set at
250 °C. The oven temperature was kept at 40 °C for 5 min, then
increased to 250 °C at a rate of 3 °C/min, and then held at 250 °C for
10 min. Di-n-butyl ether was used as an internal standard for
quantification of relevant components in pyrolytic sugars.

2.4. Catalysts characterization

2.4.1. Nitrogen physisorption analyses
Nitrogen physisorption analyses (−196.2 °C) were carried out using

a Micromeritics ASAP 2420 device. The samples were degassed in va-
cuum at 350 °C for 10 h. The surface area was calculated using the
standard BET method (SBET). The single point pore volume (VT) was
estimated from the amount of gas adsorbed at a relative pressure of
0.98 in the desorption branch. The pore size distributions (PSD) were
obtained by the BJH method using the adsorption branch of the iso-
therms, while the t-plot method was employed to quantify the micro-
pores.

2.4.2. CO chemisorption
The metallic surface area of the catalyst in reduced state was de-

termined by CO pulse chemisorption measurements using a Chemosorb
analyzer (Modern laboratory equipment, Novosibirsk, Russia). 50 mg of
fresh catalyst was placed inside an U-shaped quartz reactor and heated
to the preset temperature (350 °С for Ni-Cu, Ni-Pd, Ni-Pd-Cu catalysts
and 400 °C for Ni, Ni-Mo, and Ni-Mo-Cu catalysts, heating rate 40 °С/
min) under a flow of H2 (30 mL/min). When the final temperature was
reached, the reactor was purged by an inert gas (He) followed by
cooling to RT. Subsequently, pulses of CO were fed to the reactor
(100 μL) until the amount of CO in the outlet was constant according to
thermal conductivity detector (TCD). Thereafter the amount of chemi-
sorbed CO was estimated.

2.4.3. Transmission electron microscopy (TEM)
A Philips CM12 instrument equipped with a high-resolution camera

was used to acquire and elaborate TEM images. Powdered samples were
dispersed in 2-propanol under ultrasound irradiation and the resulting
suspension was placed drop-wise on a holey carbon-coated support
grid.

2.4.4. Scanning electron microscope with energy dispersive X-ray
spectroscopy (SEM-EDX)

The morphology of the samples was investigated by scanning elec-
tron microscopy (SEM-EDX) using a Philips XL-30-FEG SEM at an ac-
celerating voltage of 5 kV. Prior to analyses, the samples were treated
with Au using a gold sputter coater device. EDX analysis was carried out
by using samples without a pretreatment.

3. Results and discussion

3.1. Pyrolytic sugar (PS) analysis

The PS used in this study was prepared by the addition of water to a
typical PL obtained from pine wood using a fast pyrolysis process. This
results in the precipitation of the pyrolytic lignin fraction, which was
separated, leaving an aqueous PS fraction. The PS feeds were analyzed
in detail using various analytical techniques (elemental analysis (EA),
GPC, HPLC and GC–MS). The elemental composition is given in Table 1,
an overview of HPLC and GC–MS data is given in Table 3.

The main individual components are levoglucosan (16.0 wt%),
glycolaldehyde (10.8 wt%) and water (14.5 wt%). The former two are
well known components in pyrolysis liquids and sugar fractions derived

thereof. In addition, GC–MS revealed the presence of a small amount of
organic acids (2.5 wt%, mainly acetic acid) and ketones (1.4 wt%, hy-
droxyacetone, 2(5H)-furanone). In addition, small amounts of phenolics
(0.4 wt%, phenol, 2-methoxy phenol) were present. A representative
GC–MS spectrum is given in Fig. 1.

When summing up the total of GC-HPLC detectable species, it is
clear that a considerable amount of the PS fraction is not detectable by
GC and HPLC (up to 55 wt%, see Table 3) and likely consists of higher
molecular weight components. This was indeed confirmed by GPC
measurements, see Fig. 2 for details.

The PS feed shows a relatively broad distribution with a sharp peak
at lower molecular weights. The latter peak is likely associated with the
presence of LG. This was confirmed by the addition of LG to a product
sample followed by GPC analysis, resulting in an increase in the area of
this particular peak. The higher molecular weight fraction likely con-
sists of oligo-(anhydro)sugars.

To gain insight in the composition and the amount of hydrolysable
sugars, the PS fraction was hydrolysed using dilute sulfuric acid at 80
and 120 °C for 24 h. At 80 °C, 25.2 wt% of glucose, 7.8 wt% of man-
nose/xylose and 0.4 wt% of arabinose were detected in the hydrolysate
as shown in Table 3. The glucose is formed both from the hydrolysis of
LG as well as from the oligomeric sugars. Thus, part of the PS oligomers
is hydrolysable to monomeric sugars (glucose, mannose, xylose, ara-
binose). A hydrolysis experiment at 120 °C for 24 h gave very similar
results, see Table S1 (Supporting information).

The total amounts of monomeric sugars in the PS fraction as de-
tected after hydrolysis (80 °C) by HPLC is 33.4 wt%. This value is

Table 3
Main components of the pyrolytic sugar used in this study by HPLC and GC–MS.

Sample
preparation

Component in PS Analysis method Concentration (wt%)

None Levoglucosan HPLC 16.0
Glycolaldehyde HPLC 10.8
Acids GC–MS 2.5
Ketones GC–MS 1.4
Phenolics GC–MS 0.4
Water Karl-Fisher

titration
14.5

Total 45.6
Hydrolysisa Glucose HPLC 25.2

Mannose/xylose HPLC 7.8
Arabinose HPLC 0.4
Total sugars 33.4

a Hydrolysis data are for an experiment at 80 °C (see experimental section for details).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

H H

O

HO

O
OH

O

HO

O O O

O OH

O

OH OH OH

OCH
3

OH

OCH3

OCH
3

HO

OH

OCH3

CH
3

O

O

OH OH

OH

O

1 2 3 4 5 6 7

8 9 10 11 12 13

13

9
8

7
6

5

4In
te

ns
it

y

Retention Time, min

1

2 3
10

11 12

THF

Fig. 1. Representative GC–MS spectrum of the PS feed.
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comparable with the value reported for PS obtained by fractional
condensation of pyrolysis vapors by Li et al. (34.8 wt% [25]) and
slightly lower than by Chi et al. (42 ± 2 wt% [26]).

3.2. Catalysts screening experiments in a batch set-up

Catalytic screening experiments were performed in a batch set-up at
180 °C for 4 h. All catalysts, except the monometallic Ni catalyst,
yielded a single liquid phase product (94 to 99 wt% on PS intake) with a
reddish brown colour for Ni-Cu, Ni-Pd, Ni-Pd-Cu catalysts and a dark
brown colour for the Ni-Mo-Cu and Ni-Mo catalysts. An experiment
with the monometallic Ni catalyst yielded two liquid phases, a water-
rich top phase, an organic bottom phase and a sticky, viscous layer on
the reactor wall. The amounts of gas, liquid and solid phase for each
experiment are summarized in Table 4.

Minor amounts of gas phase components (0.6 to 1.4 wt% on PS
intake) are formed, the major one being CO2 (1.9–3.4 mol%). Likely,
CO2 is formed by decarboxylation reactions of small organic acids [27],
which were shown to be present in the PS fraction (around 2.5 wt%, see
Table 3). Methane and higher alkanes were not observed, indicating
that the hydrogen is consumed solely for liquid phase reactions. Total
mass balance closures are very satisfactory and above 95% for all

experiments. Solids formation is limited (0–1.2 wt%), implying that
thermal repolymerization does not occur to a considerable extent.

3.3. Catalyst activity

Since CO2 is the sole product in the gas phase and methane and
higher alkanes are absent (Table 4), all the hydrogen consumed is used
for hydrogenation reactions. As such, the experimentally measured
hydrogen uptake during a reaction is a good measure for catalyst ac-
tivity and the results are given in Fig. 3. Lowest activity was found for
the monometallic Ni catalyst (81 NL/kgfeed) whereas the bimetallic Ni-
Mo catalyst is the most active (167 NL/kgfeed). Thus, a clear promoting
effect of the second metal is observed. The addition of Cu to the mono-
metallic Ni catalyst lead to higher hydrogenation activity [28,29],
whereas the addition of Pd (in both Ni-Pd and Ni-Pd-Cu) gave a further
improvement. Thus, Pd seems is a better promoter in these reactions
than Cu, which is in agreement with results obtained for pyrolysis li-
quids [13].

Promotion by Mo gave the best results and the highest hydrogena-
tion activity was found for a bimetallic Ni-Mo catalyst. Thus, Mo is a
better promotor for these Ni-based catalysts than Cu. Comparison with
Pd is not well possible as considerably lower amounts of Pd were used
in the catalyst formulation compared to Mo (Table 2).

3.4. Product analysis

All the liquid product phases were analyzed by elemental analysis
and the data are provided in a van Krevelen plot given in Fig. 4. For
reference, the data for the PS feed, the theoretical dehydration line and
the results for a non-catalytic experiment are displayed as well. The
latter was performed with PS and nitrogen in the absence of a catalyst.
This led to the formation of large amounts of solids and a very viscous
black organic phase (less than 5 wt%). In this case, polymerization of
reactive molecules associated with water formation and the formation
of char/humin type materials is occurring to a significant extent
(Scheme 1) [30].

The van Krevelen plot gives valuable insights in the reaction path-
ways occurring during the catalytic hydrotreatment, specifically on
hydrogenation and reactions involving the formation of water (e.g.
condensation, polymerization and alcohol dehydrations) [5]. The ele-
mental composition of the product oils is a clear function of the type of
catalyst used. The O/C ratio varies between 0.40 and 0.51, whereas the
H/C ratio spans a much larger range and is between 1.36 and 1.84.
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Fig. 2. Molecular weight distribution of the PS feed by GPC.

Table 4
Overview of results for the catalytic hydrotreatment of pyrolytic sugars.a

Catalyst Ni Ni-Cu Ni-Pd Ni-Pd-Cu Ni-Mo-
Cu

Ni-Mo

Liquid phase (wt% on PS
intake)

99.1b 95.5 94.2 95.9 96.8 99.2

Solid (wt% on PS intake) 0.05 0.03 0.00 0.04 0.43 1.21
Gas phase (wt% on PS

intake)
1.4 1.3 1.2 1.2 0.6 0.6

Carbon dioxide (mol%) 3.4 3.1 3.1 3.1 1.9 2.1
Hydrogen (mol%) 96.6 96.9 96.9 96.9 98.1 97.9
Formation of a separate

water phase
Yes No No No No No

Water content in liquid
phase (wt%)

26.1c 24.2 22.7 21.0 21.1 20.1

Amount of water formed (wt
% on dry PS intake)

13.6 11.4 9.6 7.7 7.8 6.6

Mass balance closure 101 97 95 97 98 101
Hydrogen uptake (NL/kg

PS)
81 105 118 124 148 167

a Reaction conditions: 5 wt% catalyst on PS intake, 120 bar H2 (room temperature),
180 °C, 4 h.

b Two liquid phases.
c Average value for the two liquid products.
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Fig. 3. Catalyst activity, expressed as hydrogen consumption on PS intake, for the various
catalysts (batch, 180 °C, 4 h).
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Products with a higher H/C ratio are associated with a high hy-
drogenation activity of the catalysts. This was confirmed by plotting the
hydrogen consumption versus the H/C ratio for all product oils (Fig. 5).
An almost linear relationship is observed, with higher H2 consumptions
yielding products with higher H/C molar ratios. Thus, the H/C ratio of
the product is indeed a good quantitative measure for catalytic activity.

For the monometallic Ni catalyst, the hydrogen uptake and the H/C
and O/C molar ratio are the lowest within the series. Surprisingly, the
elemental ratios (H/C and O/C) are even lower than for the PS feed. The
result for a non-catalytic run with the PS feed is also given in Fig. 4.
Here, two separate liquid phases were obtained, a very viscous bottom
organic phase and an aqueous phase top layer. The elemental compo-
sition of the product oil from the monometallic Ni catalyst is close to
that of the non-catalytic experiment. As such, the data indicate that the
monometallic Ni is not a very active catalyst for the catalytic hydro-
treatment of PS, in line with the low hydrogen uptake (Fig. 3). In ad-
dition, the low H/C ratio for the monometallic Ni catalyst is indicative
for the occurrence of dehydration reactions (see theoretical dehydra-
tion line in Fig. 4), leading to higher molecular weight products. The
latter is supported by molecular weight determinations (see GPC, vide
infra, Fig. 7) and the amounts of water produced during the hydro-
treatment procedure.

All other catalysts lead to the formation of a single organic phase

with H/C ratios similar or higher than the PS feed. However, the oxygen
content is considerably lower. These findings indicate that dehydration
is not the main reaction occurring and that hydrogenation reactions
leading to higher H/C ratios, also play a major role.

The statement that the non-catalytic thermal repolymerization re-
actions particularly lead to the formation of water is supported by
considering the water production during the hydrotreatment reaction
(Table 4) versus the activity of the catalysts (Fig. 6).

Indeed, for the most active catalysts, the lowest amount of water is
formed, implying that repolymerization reactions leading to water do
not occur to a significant extent for these catalysts. It supports the hy-
pothesis that these catalysts are very active for the hydrogenation of
reactive compounds to stabilized compounds that are less prone to
polymerization at relatively low temperature.

To determine the extent of polymerization during reaction, the
molecular weight distributions of the organic products were analyzed
by GPC and the results are given in Fig. 7. After the catalytic hydro-
treatment reactions, the molecular weight of the products are slightly
higher than for the starting PS feed, indicative for the occurrence of
polymerization reactions during the catalytic hydrotreatment. As pos-
tulated before, this is likely due to thermal reactions involving the
carbonyl groups of the various sugars and smaller aldehydes (glyco-
laldehyde, Table 3) and ketones present in the PS feed [30]. When
considering the low molecular weight part of the distribution, the peak
of LG (about 250 g/mol) is reduced considerably and a new peak at
around 150–200 g/mol is formed. The latter is likely ethylene glycol
(EG), which was confirmed by spiking the sample with pure EG. The
latter may be formed by hydrogenolysis of LG [31].

A small but clear difference in the molecular weight distribution is
found for the product oils obtained from the various catalysts (Fig. 7
top). The molecular weight increase is smallest for the Ni-Mo catalyst
and highest for the Ni-Cu catalyst. For the monometallic Ni catalyst, the
increase in molecular weight is more difficult to determine as two liquid
phases are formed. However, the molecular weight of the organic phase
is the highest of all, indicative for the occurrence of a high extent of
polymerization reactions (Fig. S1, Supporting information).

The molecular weight increase is anticipated to be a function of the
rate of polymerization versus hydrogenation, suggesting that a catalyst
with the highest hydrogenation activity will give the smallest increase
in molecular weight (Scheme 1). This hypothesis is indeed confirmed by
plotting the activity of the catalyst, expressed in terms of H2 uptake,
versus the molecular weight of the product oil (Fig. 8). A clear trend is
visible, with the most active catalyst (Ni-Mo) giving a product with the
lowest molecular weight.

Based on these results, the Mo promoted catalyst is the best catalyst
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for the hydrotreatment of the pyrolytic sugars at the prevailing rela-
tively mild reaction condition. It shows the highest hydrogen uptake,
the highest H/C value of the product oil and the least increase in the
amount of higher molecular weight components.

The products were also analyzed by TGA to determine the residue
after heating a sample to 900 °C. This residue (TG residue) is an in-
dicator for the charring tendency of the liquid [13] (and as such related
to the micro carbon residue test (MCRT) value conventionally used for
crude oil feeds [32]). Products with a lower TG residue are preferred.
The TG residues for the various products are plotted in Fig. 9; the TGA
curves of the PS feed and a typical product using the Ni-Mo catalysts are
shown in Fig. S2 (Supporting information). The TG residue of the
products decreased from> 12 wt% for the original PS to values be-
tween 6 and 10 wt% for the product oils. For a non-catalytic run, the
main product was a solid and only 10 wt% of a liquid phase was ob-
tained. The TG residue of the solid phase was as high as 25 wt%, see
Fig. S2 (Supporting information). The Ni catalyst with Mo as the pro-
moter gave a product with the lowest TG residue. The TG residue of the
products also correlates nicely with the activity of the catalysts in terms
of H2 uptake. As such, it implies that a higher hydrogenation activity
leads to products with a lower charring tendency.

These findings can be rationalised considering that in particular the
aldehydes and ketones are responsible for polymerization reactions and
the formation of char. During the hydrotreatment process, aldehydes
and ketones are converted to alcohols [33] (Scheme 2), examples are
the conversion of glucose and LG to sugar alcohols such as hexitols
[34,35] and diols [36,37]. These alcohols have a lower charring ten-
dency than the aldehydes/ketones present in the original PS feed.

The reactivity of carbonyl compounds were confirmed by GC–MS
measurements as shown in Fig. 10.

The original PS feed contains significant amount of carbonyl-con-
taining molecules, e.g. aldehydes (formaldehyde, acetaldehyde, glyco-
laldehyde, etc.) and ketones (acetol, 2(5H)-furanone) as shown in Fig. 1
(vide supra). After hydrogenation at 180 °C for 4 h, aldehydes and ke-
tones are absent in the product. Hydrogenation of carbonyl-containing
molecules was further confirmed by 1H-13C NMR (Fig. 11). After
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hydrogenation at 180 °C for 4 h, the carbonyl compounds are fully
converted, in agreement with the GC–MS results.

It is of interest to notice that the conversion of LG is far from
quantitative and considerable amounts of LG are detected in the pro-
duct. As such, the hydrolysis of LG to glucose and the subsequent hy-
drogenation of glucose to among others sorbitol is relatively slow on the
timescale of the reaction under the prevailing reaction conditions with
the Ni-Mo catalyst.

3.5. Catalysts characterization

Detailed catalyst characterization studies for the fresh catalysts used
in this study are given in Ref. [38]. Here, we report additional mea-
surements (N2 physisorption data and CO chemisorption data) for the
most active (Ni-Mo/SiO2-Al2O3) and the least active catalyst (Ni/SiO2-
Al2O3). In addition, the spent catalysts after reaction were also analyzed
to gain insights in structural changes induced by the hydrotreatment
reaction.

3.5.1. Characterization of the fresh catalysts
XRD and TPR studies [38] revealed that the oxidized NiMo catalyst

contains isolated highly dispersed Mo oxides, as well as highly dis-
persed Mo oxides in intimate contact with NiO. Upon reduction at
400 °C, only part of the Ni is reduced and the highly dispersed Mo
oxides in intimate contact with NiO likely form a NiMo solid solution.
These bimetallic species may be more active than monometallic ones
and may explain the experimentally observed higher activity of the
NiMo catalyst compared to the monometallic one. However, it is also
well possible that Mo in intermediate oxidation states have (in combi-
nation with Ni) a positive effect on activity by activation of oxygenated
species. Evidence for the latter has been reported for the
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Fig. 11. Heteronuclear Single Quantum Coherence (HSQC) spectra of PS and hydrogenated PS using Ni-Mo: PS (green) and hydrogenated PS (red). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
CO chemisorption data for both catalysts.

Catalyst SAC, m2 gcat−1 μmol CO gcat−1

Ni 16.3 416
NiMo 13.2 337

Samples were pre-treated at 400 °C prior to the measurement, the details are given in
Section 2.4.
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hydrodeoxygenation of esters using Mo supported Ni catalysts [39].
The N2 adsorption-desorption isotherms of fresh Ni/SiO2-Al2O3 and

Ni-Mo/SiO2-Al2O3 catalysts are provided in Fig. S3 (Supporting in-
formation). The BET surface area of fresh Ni/SiO2-Al2O3 was

266 m2·g−1 whereas a slightly lower value for the Ni-Mo catalyst was
observed (219 m2·g−1). These values are somewhat higher than re-
ported in the literature for related catalysts (about 100–180 m2·g−1)
[7,19,20,40]. These differences are likely due to the fact that the

Carbonaceous material 

ba

c d 

e f 

g h 

Fig. 12. TEM images of the monometallic Ni and bimetallic Ni-Mo catalyst before and after reaction at 180 °C: a) fresh monometallic Ni catalyst, oxidized form, b) fresh Ni-Mo catalyst,
oxidized form, c) fresh monometallic Ni catalyst, reduced form, d) fresh Ni-Mo catalyst, reduced form, e) spent monometallic Ni catalyst, f) spent Ni-Mo catalyst, g) spent Ni-Mo catalyst,
h) magnification of a selected area in spent Ni-Mo catalyst.
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catalysts in the present study were measured in their oxidized states.
CO chemisorption data obtained for the two reduced samples are

given in Table 5. The reductive pretreatment procedure is given in
Section 2.4. It is generally assumed that the use of CO as a probe mo-
lecule is advantageous for determination of active surface area of cat-
alysts used in hydrotreatment processes. The specific surface areas of
active component (SAC) were calculated from the uptake of CO using
the approach and assumptions used in [7]. In addition, it was assumed
that CO is chemisorbed only by the metallic Ni species, though it is
known that Mox+ species also can contribute to CO adsorptions [41]. In
this respect the absolute amount of chemisorbed CO given in Table 5
might be more reliable to compare the catalysts.

It is evident from Table 5 that the monometallic Ni-based catalyst
shows a higher CO uptake than the bimetallic NiMo one. This is likely
due to a higher extent of reduction of the monometallic Ni catalyst,
confirmed by TPR measurements and XRD studies.

The TEM images of the fresh catalyst show lamellar structures with
the metal nanoparticles uniformly distributed (Fig. 12a, b, c and d).
This high dispersion of the metal nanoparticles is supported by the XRD
data [38], showing broad peaks associated with a NiO and Ni phase.
The presence of such highly dispersed metal nanoparticles in combi-
nation with the high metal loading explains the high catalyst activity
for particularly the bimetallic Ni-Mo catalyst.

3.5.2. Characterization of the spent catalysts
The spent catalysts were analyzed using TEM and SEM-EDAX. Clear

agglomeration of metal nanoparticles was observed for the mono-
metallic Ni catalyst after the catalytic hydrogenation as shown in
Fig. 12e. This is likely due to the high Ni loading on the catalyst (48%).
Agglomeration is by far less for the bimetallic catalyst (Fig. 12f and g).
As such, it is well possible that the addition of Mo has a positive effect
on the stability of the metal nanoparticles and that sintering rates are
reduced compared to the monometallic Ni catalyst. It also suggests that
the Mo promoted catalyst is likely a more stable catalyst, though this
needs to be verified in continuous set-ups for prolonged runtimes.

Some carbonaceous deposits were present on the Ni-Mo catalyst
after reaction, see Fig. 12g and h. This probably due to the deposition of
some higher molecular weight polymerization products from the
polymerization of sugars in the PS feed, which was supported by GPC
measurements (Fig. 7). The presence of carbonaceous deposits on the

spent Ni and Ni-Mo catalysts was confirmed by TGA analysis under N2

(Fig. S4, Supporting information). These measurements also show that
the amounts of such deposits on the Ni catalyst are much higher than
that for the Ni-Mo catalyst. The presence of carbonaceous deposits on
both catalysts was confirmed by SEM-EDX measurements as shown in
Fig. 13. Larger coke agglomerates on the Ni/SiO2-Al2O3 catalyst (c) are
detected, while in the presence of Mo (f), coke is indeed present but it is
distributed more uniform.

Thus, we can conclude that the deposition of carbonaceous products
and sintering, particularly for the monometallic catalyst occurs during
the hydrotreatment reaction. These findings may affect catalyst activity
considerably. Studies in continuous set-ups are in progress to determine
the catalyst stability for prolonged runtimes.

4. Conclusions

The catalytic hydrotreatment of the PS fraction of pyrolysis liquids
was studied at relatively low temperature (180 °C) using mono- and
bimetallic Ni based catalysts characterized by a high amount of Ni.
Catalyst screening experiments revealed that Mo addition to the nickel
based catalyst gives the most active catalysts. Product analysis reveals
that hydrogenation occurs to a significant extent and that thermal re-
polymerization is reduced considerably for this catalyst. As such, these
findings support the statement that active hydrogenation catalysts at
low hydrotreatment temperatures (< 200 °C) are required to avoid
excessive polymerization of mainly small aldehydes, ketones and other
low molecular weight C5 and C6 sugars, ultimately leading to char.

Catalyst characterization studies revealed that the NiMo catalyst
contains small metal nanoparticles with a certain amount of a NiMo
solid solution, which could be the reason for the high activity of this
catalyst. Alternatively, the Ni nanoparticles in combination with Mox+

species may also have a positive effect on catalyst activity as the latter
are known to be able to activate oxygenated molecules. Metal ag-
glomeration was shown to be a possible source for catalyst deactivation.
This was particularly evident for the monometallic Ni catalyst, whereas
this effect was by far lower for the bimetallic Ni-Mo catalyst. As such,
the presence of Mo appears to prevent Ni sintering. In addition, some
coke deposition on the catalyst surface was detected by TEM and SEM-
EDX. Further studies in a continuous set-up to assess catalyst stability in
detail are in progress and will be reported in due course.

a b c

d e f

Fig. 13. SEM-EDX mapping investigations on spent catalysts: a), b), c) from spent Ni/SiO2-Al2O3, d), e), f) from spent Ni-Mo/SiO2-Al2O3.
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The results of this study will be valuable input for the development
of efficient catalytic hydrotreatment technologies for pyrolysis liquids
involving a mild stabilization step followed by a deep hydrotreatment
to obtain product oils with considerably reduced oxygen contents to be
used as a co-feed in FCC units or as a blending component in biofuel. It
appears that the Ni-Mo/SiO2-Al2O3 catalyst reported here is a very
promising catalyst for the 1st mild hydrotreatment step to obtain a
stabilized product in high carbon efficiencies to be used as input for the
second deep hydrotreatment step.
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