1,310 research outputs found

    Effects of anisotropy in spin molecular-orbital coupling on effective spin models of trinuclear organometallic complexes

    Get PDF
    We consider layered decorated honeycomb lattices at two-thirds filling, as realized in some trinuclear organometallic complexes. Localized S=1S=1 moments with a single-spin anisotropy emerge from the interplay of Coulomb repulsion and spin molecular-orbit coupling (SMOC). Magnetic anisotropies with bond dependent exchange couplings occur in the honeycomb layers when the direct intracluster exchange and the spin molecular-orbital coupling are both present. We find that the effective spin exchange model within the layers is an XXZ + 120∘^\circ honeycomb quantum compass model. The intrinsic non-spherical symmetry of the multinuclear complexes leads to very different transverse and longitudinal spin molecular-orbital couplings, which greatly enhances the single-spin and exchange coupling anisotropies. The interlayer coupling is described by a XXZ model with anisotropic biquadratic terms. As the correlation strength increases the systems becomes increasingly one-dimensional. Thus, if the ratio of SMOC to the interlayer hopping is small this stabilizes the Haldane phase. However, as the ratio increases there is a quantum phase transition to the topologically trivial `DD-phase'. We also predict a quantum phase transition from a Haldane phase to a magnetically ordered phase at sufficiently strong external magnetic fields.Comment: 22 pages, 11 figures. Final version of paper to be published in PRB. Important corrections to appendix

    Heisenberg and Dzyaloshinskii-Moriya interactions controlled by molecular packing in tri-nuclear organometallic clusters

    Get PDF
    Motivated by recent synthetic and theoretical progress we consider magnetism in crystals of multi-nuclear organometallic complexes. We calculate the Heisenberg symmetric exchange and the Dzyaloshinskii-Moriya antisymmetric exchange. We show how, in the absence of spin-orbit coupling, the interplay of electronic correlations and quantum interference leads to a quasi-one dimensional effective spin model in a typical tri-nuclear complex, Mo3_3S7_7(dmit)3_3, despite its underlying three dimensional band structure. We show that both intra- and inter-molecular spin-orbit coupling can cause an effective Dzyaloshinskii-Moriya interaction. Furthermore, we show that, even for an isolated pair of molecules the relative orientation of the molecules controls the nature of the Dzyaloshinskii-Moriya coupling. We show that interference effects also play a crucial role in determining the Dzyaloshinskii-Moriya interaction. Thus, we argue, that multi-nuclear organometallic complexes represent an ideal platform to investigate the effects of Dzyaloshinskii-Moriya interactions on quantum magnets.Comment: This update incorporates the corrections described in a recently submitted erratum. Changes are confined to sections IV.A and B. The conclusions of the paper are unchanged. 12 + 4 pages, 9 figure

    Spin-orbit coupling in {Mo3_3S7_7(dmit)3_3}

    Get PDF
    Spin-orbit coupling in crystals is known to lead to unusual direction dependent exchange interactions, however understanding of the consequeces of such effects in molecular crystals is incomplete. Here we perform four component relativistic density functional theory computations on the multi-nuclear molecular crystal {Mo3_3S7_7(dmit)3_3} and show that both intra- and inter-molecular spin-orbit coupling are significant. We determine a long-range relativistic single electron Hamiltonian from first principles by constructing Wannier spin-orbitals. We analyse the various contributions through the lens of group theory. Intermolecular spin-orbit couplings like those found here are known to lead to quantum spin-Hall and topological insulator phases on the 2D lattice formed by the tight-binding model predicted for a single layer of {Mo3_3S7_7(dmit)3_3}

    Towards learning free naive bayes nearest neighbor-based domain adaptation

    Get PDF
    As of today, object categorization algorithms are not able to achieve the level of robustness and generality necessary to work reliably in the real world. Even the most powerful convolutional neural network we can train fails to perform satisfactorily when trained and tested on data from different databases. This issue, known as domain adaptation and/or dataset bias in the literature, is due to a distribution mismatch between data collections. Methods addressing it go from max-margin classifiers to learning how to modify the features and obtain a more robust representation. Recent work showed that by casting the problem into the image-to-class recognition framework, the domain adaptation problem is significantly alleviated [23]. Here we follow this approach, and show how a very simple, learning free Naive Bayes Nearest Neighbor (NBNN)-based domain adaptation algorithm can significantly alleviate the distribution mismatch among source and target data, especially when the number of classes and the number of sources grow. Experiments on standard benchmarks used in the literature show that our approach (a) is competitive with the current state of the art on small scale problems, and (b) achieves the current state of the art as the number of classes and sources grows, with minimal computational requirements. © Springer International Publishing Switzerland 2015

    From Traditional to Modern : Domain Adaptation for Action Classification in Short Social Video Clips

    Full text link
    Short internet video clips like vines present a significantly wild distribution compared to traditional video datasets. In this paper, we focus on the problem of unsupervised action classification in wild vines using traditional labeled datasets. To this end, we use a data augmentation based simple domain adaptation strategy. We utilise semantic word2vec space as a common subspace to embed video features from both, labeled source domain and unlablled target domain. Our method incrementally augments the labeled source with target samples and iteratively modifies the embedding function to bring the source and target distributions together. Additionally, we utilise a multi-modal representation that incorporates noisy semantic information available in form of hash-tags. We show the effectiveness of this simple adaptation technique on a test set of vines and achieve notable improvements in performance.Comment: 9 pages, GCPR, 201

    'Part'ly first among equals: Semantic part-based benchmarking for state-of-the-art object recognition systems

    Full text link
    An examination of object recognition challenge leaderboards (ILSVRC, PASCAL-VOC) reveals that the top-performing classifiers typically exhibit small differences amongst themselves in terms of error rate/mAP. To better differentiate the top performers, additional criteria are required. Moreover, the (test) images, on which the performance scores are based, predominantly contain fully visible objects. Therefore, `harder' test images, mimicking the challenging conditions (e.g. occlusion) in which humans routinely recognize objects, need to be utilized for benchmarking. To address the concerns mentioned above, we make two contributions. First, we systematically vary the level of local object-part content, global detail and spatial context in images from PASCAL VOC 2010 to create a new benchmarking dataset dubbed PPSS-12. Second, we propose an object-part based benchmarking procedure which quantifies classifiers' robustness to a range of visibility and contextual settings. The benchmarking procedure relies on a semantic similarity measure that naturally addresses potential semantic granularity differences between the category labels in training and test datasets, thus eliminating manual mapping. We use our procedure on the PPSS-12 dataset to benchmark top-performing classifiers trained on the ILSVRC-2012 dataset. Our results show that the proposed benchmarking procedure enables additional differentiation among state-of-the-art object classifiers in terms of their ability to handle missing content and insufficient object detail. Given this capability for additional differentiation, our approach can potentially supplement existing benchmarking procedures used in object recognition challenge leaderboards.Comment: Extended version of our ACCV-2016 paper. Author formatting modifie

    Yield sensing technologies for perennial and annual horticultural crops: a review

    Get PDF
    Yield maps provide a detailed account of crop production and potential revenue of a farm. This level of details enables a range of possibilities from improving input management, conducting on-farm experimentation, or generating profitability map, thus creating value for farmers. While this technology is widely available for field crops such as maize, soybean and grain, few yield sensing systems exist for horticultural crops such as berries, field vegetable or orchards. Nevertheless, a wide range of techniques and technologies have been investigated as potential means of sensing crop yield for horticultural crops. This paper reviews yield monitoring approaches that can be divided into proximal, either direct or indirect, and remote measurement principles. It reviews remote sensing as a way to estimate and forecast yield prior to harvest. For each approach, basic principles are explained as well as examples of application in horticultural crops and success rate. The different approaches provide whether a deterministic (direct measurement of weight for instance) or an empirical (capacitance measurements correlated to weight for instance) result, which may impact transferability. The discussion also covers the level of precision required for different tasks and the trend and future perspectives. This review demonstrated the need for more commercial solutions to map yield of horticultural crops. It also showed that several approaches have demonstrated high success rate and that combining technologies may be the best way to provide enough accuracy and robustness for future commercial systems

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1

    Treatment‐related changes in bone turnover and fracture risk reduction in clinical trials of antiresorptive drugs: proportion of treatment effect explained

    Get PDF
    Few analyses of antiresorptive (AR) treatment trials relate short‐term changes in bone turnover markers (BTMs) to subsequent fracture reduction seeking to estimate the proportion of treatment effect explained (PTE) by BTMs. Pooling such information would be useful to assess new ARs or novel dosing regimens. In the Foundation for the National Institutes of Health (FNIH) Bone Quality project, we analyzed individual‐level data from up to 62,000 participants enrolled in 12 bisphosphonate (BP) and four selective estrogen receptor modulator (SERM) placebo‐controlled fracture endpoint trials. Using BTM results for two bone formation markers (bone‐specific alkaline phosphatase [bone ALP] and pro‐collagen I N‐propeptide [PINP]) and one bone resorption marker (C‐terminal telopeptide of type I collagen [CTX]) and incident fracture outcome data, we estimated the PTE using two different models. Separate analyses were performed for incident morphometric vertebral, nonvertebral, and hip fractures over 1 to 5 years of follow‐up. For vertebral fracture, the results showed that changes in all three BTMs at 6 months explained a large proportion of the treatment effect of ARs (57 to >100%), but not for and non‐vertebral or hip fracture. We conclude that short‐term AR treatment‐related changes in bone ALP, PINP, and CTX account for a large proportion of the treatment effect for vertebral fracture. Change in BTMs is a useful surrogate marker to study the anti‐fracture efficacy of new AR compounds or novel dosing regiments with approved AR drugs. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research
    • 

    corecore