An examination of object recognition challenge leaderboards (ILSVRC,
PASCAL-VOC) reveals that the top-performing classifiers typically exhibit small
differences amongst themselves in terms of error rate/mAP. To better
differentiate the top performers, additional criteria are required. Moreover,
the (test) images, on which the performance scores are based, predominantly
contain fully visible objects. Therefore, `harder' test images, mimicking the
challenging conditions (e.g. occlusion) in which humans routinely recognize
objects, need to be utilized for benchmarking. To address the concerns
mentioned above, we make two contributions. First, we systematically vary the
level of local object-part content, global detail and spatial context in images
from PASCAL VOC 2010 to create a new benchmarking dataset dubbed PPSS-12.
Second, we propose an object-part based benchmarking procedure which quantifies
classifiers' robustness to a range of visibility and contextual settings. The
benchmarking procedure relies on a semantic similarity measure that naturally
addresses potential semantic granularity differences between the category
labels in training and test datasets, thus eliminating manual mapping. We use
our procedure on the PPSS-12 dataset to benchmark top-performing classifiers
trained on the ILSVRC-2012 dataset. Our results show that the proposed
benchmarking procedure enables additional differentiation among
state-of-the-art object classifiers in terms of their ability to handle missing
content and insufficient object detail. Given this capability for additional
differentiation, our approach can potentially supplement existing benchmarking
procedures used in object recognition challenge leaderboards.Comment: Extended version of our ACCV-2016 paper. Author formatting modifie