11 research outputs found

    Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: in vitro and in silico Study

    No full text
    Background: Cordycepin is a small molecule from medicinal mushroom Cordyceps, which has been reported for anticancer properties. Objective: In this study, we have focused on the investigation of cordycepin effect on cervical cancer cells with further clarification of possible molecular mechanism. Method: We have used cell viability and cell counting assay for cytotoxic effect of cordycepin, flow cytometric assay of apoptosis and cell cycle, and quantitative PCR (qPCR) and Western blotting for the determination of target gene expression. Molecular docking and Molecular dynamics simulation were used for in silico analysis of cordycepin affinity to target protein(s). Results: Treatment of cordycepin controlled SiHa and HeLa cervical cancer cell growth, increased the rate of their apoptosis, and interfered with cell cycle, specifically elongated S-phase. qPCR results indicated that there was a downregulation of cell cycle proteins CDK-2, CYCLIN-A2 and CYCLIN-E1 in mRNA level by cordycepin treatment but no significant change was observed in pro-apoptotic or antiapoptotic proteins. The intracellular reactive oxygen species (ROS) level in cordycepin treated cells was increased significantly, implying that apoptosis might be induced by ROS. Western blot analysis confirmed significant decrease of Cdk-2 and mild decrease of Cyclin-E1 and Cyclin-A2 by cordycepin, which might be responsible for regulating cell cycle. Molecular docking indicated high binding affinity of cordycepin against Cdk-2. Molecular dynamics simulation further confirmed that the docked pose of cordycepin-Cdk-2 complex remained within the binding pocket for 10 ns. Conclusion: Our study suggests that cordycepin is effective against cervical cancer cells, and regulating cell cycle via cell cycle proteins, especially downregulating Cdk-2, and inducing apoptosis by generating ROS are among the mechanisms of anticancer activities of cordycepin

    Impact of biochar and compost amendment on soil quality, growth and yield of a replanted apple orchard in a 4-year field study

    No full text
    BACKGROUND: Numerous studies have addressed the positive effects of organic amendments on soil and plant productivity under short-term field studies. However, to date, few studies have been conducted on the effects of organic amendment on the orchards where high nutrient bioavailability is required. This study deals with the effects of biochar and compost on soil quality, growth and yield of a replanted apple orchard in the northeast of Iran. RESULTS: Biochar+compost application resulted in 37% and 300% higher soil total organic carbon and available phosphorus content, respectively, during the first 3 years of experimentation compared to control. Similarly, trunk diameter and shoot number of apple trees increased 23–26% by the end of the first year. Nevertheless, there were no significant changes in fruitfulness, fruit weight or starch pattern index as productivity indices. CONCLUSION: Biochar and compost were beneficial in improving soil quality, mainly by increasing soil nutrient content and decreasing soil bulk density, and in increasing plant growth at early growth stages of apple orchards. However, they failed to enhance overall yield and fruit quality, most likely due to their limited ability to suppress apple replant disease. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industr

    Role of polymerization temperature on the performance of polypyrrole/dodecylbenzenesulphonate linear actuators

    No full text
    Polypyrrole doped with dodecylbenzenesulphonate (PPy/DBS) free-standing films were electropolymerized in sodium perchlorate propylene carbonate solution at different temperatures, observing increasing conductivity with decreasing synthesis temperature. Our goal in this study was to evaluate how the linear actuation of PPy depends on the polymerization temperature. The anion driven actuation of materials synthesized at lower temperatures changed to mainly cation active for PPy/DBS films polymerized at 20 degrees C; the latter films also showed the highest diffusion coefficients. Scanning electron microscopy did show that the surface roughness of the films increased with increasing synthesis temperature, as expected. Isometric and isotonic electro-chemo mechanical deformation (ECMD) measurements were performed with combined electrochemical techniques (cyclic voltammetry and chronoamperometry), revealing wide differences in the actuation behavior

    Human Health Risk Surveillance Through the Determination of Organochlorine Pesticides by High-Performance Liquid Chromatography in Water, Sediments, and Fish from the Chenab River, Pakistan

    No full text
    The current study assessed the spatiotemporal variations and human health surveillance associated with organochlorine pesticide (OCP) contamination in water, sediments, and fish from Chenab River, Pakistan. The OCP determinations were performed using high-performance liquid chromatography with a reverse-phase C18 column. The total OCP levels ranged from 13.33 to 274.59ng/L in water, 4.63 to 239.11ng/g in sediments, and 23.79 to 387.12ng/g in fish species. The overall pattern of mean OCP concentrations followed the order as sigma DDTs>sigma endosulfan>aldrin and OCP pollution pattern among the headworks were Khanki Barrage>Qadirabad Barrage>Trimmu Barrage>Marala Barrage in all three environmental matrixes during both seasons. The estimated daily intake (EDI) for Sigma OCPs was found to be 22.44ng/kg/day. The hazard ratios calculated to assess the carcinogenic risk indicated that the values for Sigma DDT and aldrin at the 95th percentile concentrations were greater than one, indicating the probability of carcinogenic risk occurrence of one in million populations due to fish consumption. Therefore, these high levels of OCPs and carcinogenic risk through fish consumption highlight the needs of immediate elimination of OCPs from riverine environment of Chenab River and we recommend long-term monitoring-based freshwater ecological studies to be conducted in the study area

    Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia

    No full text
    Humic-like substances (HULIS) are complex mixtures that are highly associated with brown carbon (BrC) and are important components of biomass burning (BB) emissions. In this study, we investigated the light absorption, emission factors (EFs), and amounts of HULIS emitted from the simulated burning of 27 types of regionally important rainforest biomass in Southeast Asia. We observed that HULIS had a high mass absorption efficiency at 365 nm (MAE(365)), with an average value of 2.6 +/- 0.83 m(2) g(-1) C. HULIS emitted from BB accounted for 65% +/- 13% of the amount of water-soluble organic carbon (WSOC) and 85% +/- 10% of the light absorption of WSOC at 365 nm. The EFs of HULIS from BB averaged 2.3 +/- 2.1 g kg(-1) fuel, and the burning of the four vegetation subtypes (herbaceous plants, shrubs, evergreen trees, and deciduous trees) exhibited different characteristics. The differences in EFs among the subtypes were likely due to differences in lignin content in the vegetation, the burning conditions, or other factors. The light absorption characteristics of HULIS were strongly associated with the EFs. The annual emissions (minimum-maximum) of HULIS from BB in this region in 2016 were 200-371 Gg. Furthermore, the emissions from January to April accounted for 99% of the total annual emissions of HULIS, which is likely the result of the burning activities during this season. The most significant emission regions were Cambodia, Burma, Thailand, and Laos. This study, which evaluated emissions of HULIS by simulating open BB, contributes to a better understanding of the light-absorbing properties and regional budgets of BrC in this region. (C) 2020 Elsevier Ltd. All rights reserved

    Influence of solvent on linear polypyrrole-polyethylene oxide actuators

    No full text
    Ionic conductivity of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) was improved by loading of 10 wt % of polyethylene oxide (PEO). The linear actuation properties of PPy-PEO/DBS films were investigated and compared in polar (aqueous) and aprotic (propylene carbonate) solvents keeping the concentration of lithium bis(trifluoromethane)sulfonimide (LiTFSI) electrolyte the same. The results were compared to those of pristine PPy/DBS films. The actuation direction changed from pure cation-driven in the aqueous electrolyte (LiTFSI(aq)) to anion-driven in propylene carbonate electrolyte (LiTFSI(PC)). At the same time, the electro-chemo-mechanical deformation revealed that the strain of PPy-PEO/DBS increased from 5% in LiTFSI(aq) to 20% in LiTFSI(PC). The effect of solvent on the ionic conductivity was investigated using electrochemical impedance spectroscopy, showing a 27% increase in charge transfer kinetics and an increase in the electronic conductivity, resulting in significant increase in the strain rate, when propylene carbonate electrolyte was used. (c) 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46831
    corecore