23 research outputs found

    Photodynamic Opening of the Blood–Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors

    Get PDF
    Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood–brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.RF Governmental GrantRSFRFBRPeer Reviewe

    Music improves the therapeutic effects of bevacizumab in rats with glioblastoma: Modulation of drug distribution to the brain

    Get PDF
    Background: The development of new methods for modulation of drug distribution across to the brain is a crucial step in the effective therapies for glioblastoma (GBM). In our previous work, we discovered the phenomenon of music-induced opening of the blood-brain barrier (OBBB) in healthy rodents. In this pilot study on rats, we clearly demonstrate that music-induced BBB opening improves the therapeutic effects of bevacizumab (BZM) in rats with GBM via increasing BZM distribution to the brain along the cerebral vessels. Methods: The experiments were performed on Wistar male rats (200-250 g, n=161) using transfected C6-TagRFP cell line and the loud rock music for OBBB. The OBBB was assessed by spectrofluorometric assay of Evans Blue (EB) extravasation and confocal imaging of fluorescent BZM (fBZM) delivery into the brain. Additionally, distribution of fBZM and Omniscan in the brain was studied using fluorescent and magnetic resonance imaging (MRI), respectively. To analyze the therapeutic effects of BZM on the GBM growth in rats without and with OBBB, the GBM volume (MRI scans), as well as immunohistochemistry assay of proliferation (Ki67 marker) and apoptosis (Bax marker) in the GBM cells were studied. The Mann-Whitney-Wilcoxon test was used for all analysis, the significance level was p < 0.05, n=7 in each group. Results: Our finding clearly demonstrates that music-induced OBBB increases the delivery of EB into the brain tissues and the extravasation of BZM into the brain around the cerebral vessels of rats with GBM. Music significantly increases distribution of tracers (fBZM and Omniscan) in the rat brain through the pathways of brain drainage system (perivascular and lymphatic), which are an important route of drug delivery into the brain. The music-induced OBBB improves the suppressive effects of BZM on the GBM volume and the cellular mechanisms of tumor progression that was accompanied by higher survival among rats in the GBM+BZM+Music group vs. other groups. Conclusion: We hypothesized that music improves the therapeutic effects of BZM via OBBB in the normal cerebral vessels and lymphatic drainage of the brain tissues. This contributes better distribution of BZM in the brain fluids and among the normal cerebral vessels, which are used by GBM for invasion and co-opt existing vessels as a satellite tumor form. These results open the new perspectives for an improvement of therapeutic effects of BZM via the music-induced OBBB for BZM in the normal cerebral vessels, which are used by GBM for migration and progression

    Brain Waste Removal System and Sleep: Photobiomodulation as an Innovative Strategy for Night Therapy of Brain Diseases

    Get PDF
    Emerging evidence suggests that an important function of the sleeping brain is the removal of wastes and toxins from the central nervous system (CNS) due to the activation of the brain waste removal system (BWRS). The meningeal lymphatic vessels (MLVs) are an important part of the BWRS. A decrease in MLV function is associated with Alzheimer’s and Parkinson’s diseases, intracranial hemorrhages, brain tumors and trauma. Since the BWRS is activated during sleep, a new idea is now being actively discussed in the scientific community: night stimulation of the BWRS might be an innovative and promising strategy for neurorehabilitation medicine. This review highlights new trends in photobiomodulation of the BWRS/MLVs during deep sleep as a breakthrough technology for the effective removal of wastes and unnecessary compounds from the brain in order to increase the neuroprotection of the CNS as well as to prevent or delay various brain diseases.RF GovernmentalRSFRFBRInnovation Fund of WNLO and Innovation Project of Optics Valley LaboratoryNational Natural Science Foundation of China (NSFC)Peer Reviewe

    Pilot study of transcranial photobiomodulation of lymphatic clearance of beta-amyloid from the mouse brain: breakthrough strategies for non-pharmacologic therapy of Alzheimer's disease

    Get PDF
    In this pilot study, we analyzed effects of transcranial photobiomodulation (tPBM, 1267 nm, 32 J/cm2) on clearance of beta-amyloid (Aβ) from the mouse brain. The immunohistochemical and confocal data clearly demonstrate the significant reduction of deposition of Aβ plaques in mice after tPBM vs. untreated animals. The behavior tests showed that tPBM improved the cognitive, memory and neurological status of mice with Alzheimer’s disease (AD). Using of our original method based on optical coherence tomography (OCT) analysis of clearance of gold nanorods (GNRs) from the brain, we proposed possible mechanism underlying tPBM-stimulating effects on clearance of Aβ via the lymphatic system of the brain and the neck. These results open breakthrough strategies for a non-pharmacological therapy of Alzheimer’s disease and clearly demonstrate that tPBM might be a promising therapeutic target for preventing or delaying Alzheimer’s disease

    A Novel Method to Stimulate Lymphatic Clearance of Beta-Amyloid from Mouse Brain Using Noninvasive Music-Induced Opening of the Blood–Brain Barrier with EEG Markers

    Get PDF
    The lymphatic system of the brain meninges and head plays a crucial role in the clearance of amyloid-β protein (Aβ), a peptide thought to be pathogenic in Alzheimer’s disease (AD), from the brain. The development of methods to modulate lymphatic clearance of Aβ from the brain coild be a revolutionary step in the therapy of AD. The opening of the blood–brain barrier (OBBB) by focused ultrasound is considered as a possible tool for stimulation of clearance of Aβ from the brain of humans and animals. Here, we propose an alternative method of noninvasive music-induced OBBB that is accompanied by the activation of clearance of fluorescent Aβ (Fαβ) from the mouse brain. Using confocal imaging, fluorescence microscopy, and magnetic resonance tomography, we clearly demonstrate that OBBB by music stimulates the movement of Fαβ and Omniscan in the cerebrospinal fluid and lymphatic clearance of Fαβ from the brain. We propose the extended detrended fluctuation analysis (EDFA) as a promising method for the identification of OBBB markers in the electroencephalographic (EEG) patterns. These pilot results suggest that music-induced OBBB and the EDFA analysis of EEG can be a noninvasive, low-cost, labeling-free, clinical perspective and completely new approach for the treatment and monitoring of AD.Peer Reviewe

    Characterization of cerebral blood flow dynamics with multiscale entropy

    Get PDF
    Based on the laser speckle contrast imaging (LSCI) and the multiscale entropy (MSE), we study in this work the blood flow dynamics at the levels of cerebral veins and the surrounding network of microcerebral vessels. We discuss how the phenylephrine-related acute peripheral hypertension is reflected in the cerebral circulation and show that the observed changes are scale-dependent, and they are significantly more pronounced in microcerebral vessels, while the macrocerebral dynamics does not demonstrate authentic inter-group distinctions. We also consider the permeability of blood–brain barrier (BBB) and study its opening caused by sound exposure. We show that alterations associated with the BBB opening can be revealed by the analysis of blood flow at the level of macrocerebral vessels

    Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma

    Get PDF
    The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs

    Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: new perspectives for glioma therapy

    Get PDF
    The blood-brain barrier (BBB) has a significant contribution to the protection of the central nervous system (CNS). However, it also limits the brain drug delivery and thereby complicates the treatment of CNS diseases. The development of safe methods for an effective delivery of medications and nanocarriers to the brain can be a revolutionary step in the overcoming this limitation. Here, we report the unique properties of the lymphatic system to deliver tracers and liposomes to the brain meninges, brain tissues, and glioma in rats. Using a quantum-dot-based 1267 nm laser (for photosensitizer-free generation of singlet oxygen), we clearly demonstrate photostimulation of lymphatic delivery of liposomes to glioma as well as lymphatic clearance of liposomes from the brain. These pilot findings open promising perspectives for photomodulation of lymphatic delivery of drugs and nanocarriers to the brain pathology bypassing the BBB. The lymphatic "smart"delivery of liposomes with antitumor drugs in the new brain tumor branches might be a breakthrough strategy for the therapy of gliomas
    corecore