57 research outputs found

    Production of Gluten-free Bread Based on Rational Use of Natural Resources

    Get PDF
    The paper provides a scientific foundation for an integrated approach to the problem of expanding the range of bread for special purposes, including that for patients with celiac disease. The high cost of gluten-free foreign products makes rational use of cornflour and bread production technology based on it currently relevant. The use of enzymatic modification of cornflour starch is found to increase the gas formation of dough, which increases the accumulation of mono- and disaccharides up to 5.5 %. The use of surfactants to increase the gas retention capacity of dough is proved to be expedient. The effect of deoiled soy lecithin on the properties of dough and qualitative characteristics of cornbread was discovered. Dry egg albumen was added to make the bread structure porous. Preliminary hydration of protein was revealed to improve the leavening of bread. It was proved that semi-finished product, hydrolysate, in an amount of 50 % of the cornflour weight, 1 % soybean deoiled lecithin, 2.5 % vegetable oil, and 4 % dried egg albumen increase the gas retention capacity of dough and reduce its viscosity and gelatinization temperature to produce high-quality gluten-free corn pan bread

    ΠšΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ: ΠΎΠΏΡ‹Ρ‚ ΠΈ пСрспСктивы примСнСния Π² аналитичСских систСмах

    Get PDF
    The article is of a review nature, in which the dynamics of publication activity is analyzed and the possibilities of using quantum dots to solve various analytical problems are evaluated. The attention is paid to both traditional and relatively rare areas of analytical application of these nanostructures. A brief review of the types, advantages and disadvantages of synthesis methods, the influence of external factors on the band gap and luminescence intensity of inorganic nanosized phosphors, quantum dots of different nature, is presented. The areas of application and the main tasks solved with the use of quantum dots are systematized. Their analytical characteristics, operational properties and ways of regulating them are discussed. An effective way to control the analytical properties of the systems based on quantum dots is a directional change of the affinity for components by varying the nature of the stabilizing or modifying shell. Semiconductor colloidal quantum dots coated with a larger bandgap shell were selected for analytical use as the most commonly used systems due to their good photostability and fluorescence quantum yield. The advantages and disadvantages of other types of shells, as well as ways of modifying them, are shown. Solutions for organic analysis and medical diagnostics are considered. Systems of quantum dots used as biosensors with various guiding agents are considered, and their properties, advantages and disadvantages compared. Little studied issues and solutions in the direction of using quantum dots for developing sensor systems and their use for non-invasive analysis of living systems based on the results of detection of volatile organic compounds are identified.Keywords: quantum dots, application, analysis, reviewΠ‘Ρ‚Π°Ρ‚ΡŒΡ носит ΠΎΠ±Π·ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, Π² Π½Π΅ΠΉ анализируСтся Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ активности, ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ возмоТности примСнСния ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… аналитичСских Π·Π°Π΄Π°Ρ‡. ΠŸΡ€ΠΈ этом Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся ΠΊΠ°ΠΊ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅Π΄ΠΊΠΈΠΌ направлСниям аналитичСского примСнСния этих наноструктур. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Ρ‚ΠΈΠΏΠΎΠ², достоинств ΠΈ нСдостатков способов синтСза, влияния Π²Π½Π΅ΡˆΠ½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΡˆΠΈΡ€ΠΈΠ½Ρƒ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ нСорганичСских Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€ΠΎΠ² - ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. БистСматизированы области примСнСния ΠΈ основныС Π·Π°Π΄Π°Ρ‡ΠΈ, Ρ€Π΅ΡˆΠ°Π΅ΠΌΡ‹Π΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΈΡ… аналитичСскиС характСристики, эксплуатационныС свойства ΠΈ способы управлСния ΠΈΠΌΠΈ. Показано, Ρ‡Ρ‚ΠΎ эффСктивным способом управлСния аналитичСскими свойствами систСм Π½Π° основС ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ являСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ сродства ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌ Π·Π° счСт Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΈΠ»ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ. Для использования Π² аналитичСских цСлях Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Π΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΎΠΉ с большСй ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹, ΠΊΠ°ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ систСмы, благодаря ΠΈΡ… Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌ Ρ„ΠΎΡ‚ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΌΡƒ Π²Ρ‹Ρ…ΠΎΠ΄Ρƒ флуорСсцСнции. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства ΠΈ нСдостатки Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅ΠΊ, Π° Ρ‚Π°ΠΊΠΆΠ΅ способы ΠΈΡ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. РассмотрСны Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ для органичСского Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ мСдицинской диагностики. РассмотрСны систСмы ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, примСняСмыС Π² качСствС биосСнсоров, с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ, сопоставлСны ΠΈΡ… свойства, достоинства ΠΈ нСдостатки. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΌΠ°Π»ΠΎ ΠΏΡ€ΠΎΡ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ вопросы ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ примСнСния ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сСнсорных систСм, использования ΠΈΡ… для Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΆΠΈΠ²Ρ‹Ρ… систСм ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ дСтСктирования Π»Π΅Π³ΠΊΠΎ Π»Π΅Ρ‚ΡƒΡ‡ΠΈΡ… органичСских соСдинСний.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅, Π°Π½Π°Π»ΠΈΠ·, ΠΎΠ±Π·ΠΎ

    Quantum dots: experience and prospects of application in analytical systems

    Full text link
    Π‘Ρ‚Π°Ρ‚ΡŒΡ носит ΠΎΠ±Π·ΠΎΡ€Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, Π² Π½Π΅ΠΉ анализируСтся Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ активности, ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ возмоТности примСнСния ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… аналитичСских Π·Π°Π΄Π°Ρ‡. ΠŸΡ€ΠΈ этом Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ удСляСтся ΠΊΠ°ΠΊ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅Π΄ΠΊΠΈΠΌ направлСниям аналитичСского примСнСния этих наноструктур. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΊΡ€Π°Ρ‚ΠΊΠΈΠΉ ΠΎΠ±Π·ΠΎΡ€ Ρ‚ΠΈΠΏΠΎΠ², достоинств ΠΈ нСдостатков способов синтСза, влияния Π²Π½Π΅ΡˆΠ½ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΡˆΠΈΡ€ΠΈΠ½Ρƒ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ нСорганичСских Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€ΠΎΠ² - ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Π½ΠΎΠΉ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹. БистСматизированы области примСнСния ΠΈ основныС Π·Π°Π΄Π°Ρ‡ΠΈ, Ρ€Π΅ΡˆΠ°Π΅ΠΌΡ‹Π΅ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ. ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΈΡ… аналитичСскиС характСристики, эксплуатационныС свойства ΠΈ способы управлСния ΠΈΠΌΠΈ. Показано, Ρ‡Ρ‚ΠΎ эффСктивным способом управлСния аналитичСскими свойствами систСм Π½Π° основС ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ являСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ сродства ΠΊ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌ Π·Π° счСт Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ ΡΡ‚Π°Π±ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΈΠ»ΠΈ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΈ. Для использования Π² аналитичСских цСлях Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠ»Π»ΠΎΠΈΠ΄Π½Ρ‹Π΅ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ ΠΎΠ±ΠΎΠ»ΠΎΡ‡ΠΊΠΎΠΉ с большСй ΡˆΠΈΡ€ΠΈΠ½ΠΎΠΉ Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ‹, ΠΊΠ°ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ систСмы, благодаря ΠΈΡ… Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌ Ρ„ΠΎΡ‚ΠΎΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΌΡƒ Π²Ρ‹Ρ…ΠΎΠ΄Ρƒ флуорСсцСнции. ΠŸΠΎΠΊΠ°Π·Π°Π½Ρ‹ прСимущСства ΠΈ нСдостатки Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΎΠ±ΠΎΠ»ΠΎΡ‡Π΅ΠΊ, Π° Ρ‚Π°ΠΊΠΆΠ΅ способы ΠΈΡ… ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. РассмотрСны Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ для органичСского Π°Π½Π°Π»ΠΈΠ·Π° ΠΈ мСдицинской диагностики. РассмотрСны систСмы ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ, примСняСмыС Π² качСствС биосСнсоров, с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΌΠΈ Π°Π³Π΅Π½Ρ‚Π°ΠΌΠΈ, сопоставлСны ΠΈΡ… свойства, достоинства ΠΈ нСдостатки. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΌΠ°Π»ΠΎ ΠΏΡ€ΠΎΡ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ вопросы ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ примСнСния ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ сСнсорных систСм, использования ΠΈΡ… для Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΆΠΈΠ²Ρ‹Ρ… систСм ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ дСтСктирования Π»Π΅Π³ΠΊΠΎ Π»Π΅Ρ‚ΡƒΡ‡ΠΈΡ… органичСских соСдинСний.The article is of a review nature, in which the dynamics of publication activity is analyzed and the possibilities of using quantum dots to solve various analytical problems are evaluated. The attention is paid to both traditional and relatively rare areas of analytical application of these nanostructures. A brief review of the types, advantages and disadvantages of synthesis methods, the influence of external factors on the band gap and luminescence intensity of inorganic nanosized phosphors, quantum dots of different nature, is presented. The areas of application and the main tasks solved with the use of quantum dots are systematized. Their analytical characteristics, operational properties and ways of regulating them are discussed. An effective way to control the analytical properties of the systems based on quantum dots is a directional change of the affinity for components by varying the nature of the stabilizing or modifying shell. Semiconductor colloidal quantum dots coated with a larger bandgap shell were selected for analytical use as the most commonly used systems due to their good photostability and fluorescence quantum yield. The advantages and disadvantages of other types of shells, as well as ways of modifying them, are shown. Solutions for organic analysis and medical diagnostics are considered. Systems of quantum dots used as biosensors with various guiding agents are considered, and their properties, advantages and disadvantages compared. Little studied issues and solutions in the direction of using quantum dots for developing sensor systems and their use for non-invasive analysis of living systems based on the results of detection of volatile organic compounds are identified.ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π·Π° счСт Π³Ρ€Π°Π½Ρ‚Π° Российского Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ Ρ„ΠΎΠ½Π΄Π° β„– 23-23-00609, https://rscf.ru/project/ 23-23-00609.This work was supported by the Russian Science Foundation (grant no. β„– 23-23-00609, https://rscf.ru/project/ 23-23-00609

    CLINICALLY RELEVANT MINOR HISTOCOMPATIBILITY ANTIGENS FOR RUSSIAN PATIENTS UNDERGOING HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Get PDF
    Hematopoietic stem cell transplantation (HSCT) from healthy donors is used for blood cancer treatment. Alloreactive graft-versus-host disease (GvHD) is one of the post-transplant detrimental side effects, and the main reason for GVHD after HSCT fully matched for human leukocyte peptide antigens (HLA) presented by HLA molecules on cell surface. These polymorphic peptides, minor histocompatibility antigens (MiHA), arise from any genes, including those expressed at hematopoietic tissues. The latter may lead to the s.c. graft-versus-leukemia effect (GvL), thus preventing relapse of a malignancy. A*02:01 is one of the most frequent HLA alleles for European part of Russia. We assessed frequencies for 20 MiHA-encoded genetic polymorphisms, presented via A*02:01 allele, for plausible bone marrow donors, or hematopoietic stem cells (HSC) from the Donor Registry at Russian National Research Center for Hematology, we have also determined a number of immunogenic mismatches for these 20 MiHA in real donor – recipient pairs. A total of 608 potential donors, 90 donors and 92 recipients were genotyped. Using public data, we have shown that frequencies for MiHA coding genes are most close to appropriate frequencies among the European population. We have calculated probability of MiHA-specific alloimmune response after HSCT: there are chances of 33 and 75% for three or more immunogenic mismatches (IM) for related and unrelated HSCTs, respectively. Real frequencies for immune mismatch in 20 related and 20 unrelated donor – recipient pairs are in accordance with estimated theoretical probabilities. As based on the calculated frequencies, we suggest the LB-NDC80- 1P/A, LB-CCL4- 1T, and HA-1 MiHA to be the most promising minor antigens for targeted cell therapies of hematopoietic tissue malignancies. The data obtained could be used for planning allo-HSCTs in Russian patients

    Inspired by Sea Urchins: Warburg Effect Mediated Selectivity of Novel Synthetic Non-Glycoside 1,4-Naphthoquinone-6S-Glucose Conjugates in Prostate Cancer

    Get PDF
    The phenomenon of high sugar consumption by tumor cells is known as Warburg effect. It results from a high glycolysis rate, used by tumors as preferred metabolic pathway even in aerobic conditions. Targeting the Warburg effect to specifically deliver sugar conjugated cytotoxic compounds into tumor cells is a promising approach to create new selective drugs. We designed, synthesized, and analyzed a library of novel 6-S-(1,4-naphthoquinone-2-yl)-d-glucose chimera molecules (SABs)—novel sugar conjugates of 1,4-naphthoquinone analogs of the sea urchin pigments spinochromes, which have previously shown anticancer properties. A sulfur linker (thioether bond) was used to prevent potential hydrolysis by human glycoside-unspecific enzymes. The synthesized compounds exhibited a Warburg effect mediated selectivity to human prostate cancer cells (including highly drug-resistant cell lines). Mitochondria were identified as a primary cellular target of SABs. The mechanism of action included mitochondria membrane permeabilization, followed by ROS upregulation and release of cytotoxic mitochondrial proteins (AIF and cytochrome C) to the cytoplasm, which led to the consequent caspase-9 and -3 activation, PARP cleavage, and apoptosis-like cell death. These results enable us to further clinically develop these compounds for effective Warburg effect targeting

    ΠšΠ›Π˜ΠΠ˜Π§Π•Π‘ΠšΠ˜Π™ БЛУЧАЙ Π£Π‘ΠŸΠ•Π¨ΠΠžΠ“Πž Π›Π•Π§Π•ΠΠ˜Π― Π‘ΠžΠ›Π¬ΠΠžΠ“Πž РАКОМ ΠŸΠ˜Π©Π•Π’ΠžΠ”Π IV Π‘Π’ΠΠ”Π˜Π˜

    Get PDF
    Background. Esophageal cancer is among the ten most common cancers and causes-related mortality worldwide. Most patients present with an advanced stage tumor at diagnosis. To treat patients with esophagealΒ cancer, radiation therapy in combination with chemotherapy is usually used. In the clinic of A.F. Tsyb Medical Radiological Scientific Center, patients with advanced esophageal cancer are treated with split-course radiotherapy delivered in two fractions (1–1.5 Gy) with a 4-hour interval. The positive effect is observed significantly earlier than in conventional radiotherapy.Case description. A 50-year-old male patient presented with complaints of hoarseness of voice and difficulty swallowing in February 2015. The patient was diagnosed with stage cΠ’4N2M1 cervical esophageal cancer (tumor length 3.5 cm) with metastases in cervical lymph nodes and the thyroid and esophageal stenosis (stage IV). Cytological examination revealed keratinizing squamous cell esophageal carcinoma. The tumor was considered inoperable. The patient underwent gastrostomy. Radiation therapy delivered to the tumor and metastases was performed 5 times a week using two lateral fields and one anterior field. The total radiation dose was 60 Gy. A complete response was achieved. Three courses of chemotherapy with carboplatin (AUC 6), paclitaxel (75 mg/m2 ) with a 21-day interval were administered 2 months after radiotherapy. In January 2016, new metastases in the thyroid were detected. Thyroidectomy with microsurgical neurolysis of the laryngeal nerves was performed. The patient is alive 3 years and 7 months after diagnosis.Conclusion. The use of nonconventional fractionated radiotherapy schedules in combination with chemotherapy allows satisfactory treatment outcomes in patients with advanced esophageal cancer to be obtained.Β ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π Π°ΠΊ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π° (РП) находится Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ дСсяткС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ с высокой Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ‚ постановки Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΡƒΠΆΠ΅ имССтся III–IV стадия ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ процСсса. Π›Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с распространСнным ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹ΠΌ процСссом – Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ слоТная Π·Π°Π΄Π°Ρ‡Π°, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ лучСвая тСрапия Π² сочСтании с Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ. Π’ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ΅ ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΎΠ³ΠΎ радиологичСского Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ Π¦Π΅Π½Ρ‚Ρ€Π° ΠΈΠΌ. А.Π€. Π¦Ρ‹Π±Π° ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… распространСнным Ρ€Π°ΠΊΠΎΠΌ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π° примСняСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° дроблСния ΡƒΠΊΡ€ΡƒΠΏΠ½Π΅Π½Π½ΠΎΠΉ Π΄Π½Π΅Π²Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ‹ (2,5 Π“Ρ€) Π½Π° 2 Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ (1–1,5 Π“Ρ€) с ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ ΠΌΠ΅ΠΆΠ΄Ρƒ фракциями 4 Ρ‡. Π‘ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π»Π΅Π³Ρ‡Π΅ пСрСносят Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅, Π° эффСкт Ρ€Π΅ΠΊΠ°Π½Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π° ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΠΈ ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ³Π»Π°Ρ‚Ρ‹Π²Π°Π½ΠΈΠΈ ΠΏΠΈΡ‰ΠΈ Π½Π°ΡΡ‚ΡƒΠΏΠ°ΡŽΡ‚ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π°Π½ΡŒΡˆΠ΅, Ρ‡Π΅ΠΌ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Π²Π΅Π½Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΌ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠΈ.ОписаниС клиничСского случая. Π‘ΠΎΠ»ΡŒΠ½ΠΎΠΉ обратился Π² МРНЦ ΠΈΠΌ. А.Π€. Π¦Ρ‹Π±Π° Π² Ρ„Π΅Π²Ρ€Π°Π»Π΅ 2015 Π³. с ΠΆΠ°Π»ΠΎΠ±Π°ΠΌΠΈ Π½Π° ΠΎΡΠΈΠΏΠ»ΠΎΡΡ‚ΡŒ голоса ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ проходимости ΠΏΠΈΡ‰ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ комплСксного обслСдования установлСн Π΄ΠΈΠ°Π³Π½ΠΎΠ· Ρ€Π°ΠΊ шСйного ΠΎΡ‚Π΄Π΅Π»Π° ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π° с мСтастазами Π² лимфатичСскиС ΡƒΠ·Π»Ρ‹ шСи ΠΈ Π² Ρ‰ΠΈΡ‚ΠΎΠ²ΠΈΠ΄Π½ΡƒΡŽ ΠΆΠ΅Π»Π΅Π·Ρƒ сВ4N2M1, стСноз ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π° IV стСпСни, ΠΏΡ€ΠΎΡ‚ΡΠΆΠ΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ 7,5 см. ΠžΠΏΡƒΡ…ΠΎΠ»ΡŒ ΠΏΡ€ΠΈΠ·Π½Π°Π½Π° Π½Π΅ΠΎΠΏΠ΅Ρ€Π°Π±Π΅Π»ΡŒΠ½ΠΎΠΉ, Π±ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ Π±Ρ‹Π»ΠΎ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ Π»ΡƒΡ‡Π΅Π²ΠΎΠ΅ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ с ΠΏΠ°Π»Π»ΠΈΠ°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ†Π΅Π»ΡŒΡŽ, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° гастростомия. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° лучСвая тСрапия ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΈ мСтастазов Π² статичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅ с 3 ΠΏΠΎΠ»Π΅ΠΉ: с Π΄Π²ΡƒΡ… Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 6Γ—11 см ΠΈ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅Π³ΠΎ поля 12Γ—11 см 5 Ρ€Π°Π· Π² нСдСлю с Π΄Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΠ΅ΠΌ Π΄Π½Π΅Π²Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ‹. Буммарная очаговая Π΄ΠΎΠ·Π° составила 60 Π“Ρ€. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ эффСкт лСчСния. Π§Π΅Ρ€Π΅Π· 2 мСс Π±ΠΎΠ»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ 3 курса Π΄Π²ΡƒΡ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ январС 2016 Π³. Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° тирСоидэктомия с микрохирургичСским Π½Π΅Π²Ρ€ΠΎΠ»ΠΈΠ·ΠΎΠΌ Π³ΠΎΡ€Ρ‚Π°Π½Π½Ρ‹Ρ… Π½Π΅Ρ€Π²ΠΎΠ². Π‘ΠΎΠ»ΡŒΠ½ΠΎΠΉ находится ΠΏΠΎΠ΄ наблюдСниСм 3 Π³ΠΎΠ΄Π° 7 мСс послС лСчСния, ΠΆΠ°Π»ΠΎΠ± Π½Π΅ ΠΏΡ€Π΅Π΄ΡŠΡΠ²Π»ΡΠ΅Ρ‚.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСстандартных Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² фракционирования Π»ΡƒΡ‡Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π² сочСтании с Ρ…ΠΈΠΌΠΈΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с распространСнным Ρ€Π°ΠΊΠΎΠΌ ΠΏΠΈΡ‰Π΅Π²ΠΎΠ΄Π°.

    A CASE REPORT OF SUCCESSFUL TREATMENT OF STAGE IV ESOPHAGEAL CANCER

    Get PDF
    Background. Esophageal cancer is among the ten most common cancers and causes-related mortality worldwide. Most patients present with an advanced stage tumor at diagnosis. To treat patients with esophagealΒ cancer, radiation therapy in combination with chemotherapy is usually used. In the clinic of A.F. Tsyb Medical Radiological Scientific Center, patients with advanced esophageal cancer are treated with split-course radiotherapy delivered in two fractions (1–1.5 Gy) with a 4-hour interval. The positive effect is observed significantly earlier than in conventional radiotherapy.Case description. A 50-year-old male patient presented with complaints of hoarseness of voice and difficulty swallowing in February 2015. The patient was diagnosed with stage cΠ’4N2M1 cervical esophageal cancer (tumor length 3.5 cm) with metastases in cervical lymph nodes and the thyroid and esophageal stenosis (stage IV). Cytological examination revealed keratinizing squamous cell esophageal carcinoma. The tumor was considered inoperable. The patient underwent gastrostomy. Radiation therapy delivered to the tumor and metastases was performed 5 times a week using two lateral fields and one anterior field. The total radiation dose was 60 Gy. A complete response was achieved. Three courses of chemotherapy with carboplatin (AUC 6), paclitaxel (75 mg/m2 ) with a 21-day interval were administered 2 months after radiotherapy. In January 2016, new metastases in the thyroid were detected. Thyroidectomy with microsurgical neurolysis of the laryngeal nerves was performed. The patient is alive 3 years and 7 months after diagnosis.Conclusion. The use of nonconventional fractionated radiotherapy schedules in combination with chemotherapy allows satisfactory treatment outcomes in patients with advanced esophageal cancer to be obtained
    • …
    corecore