70 research outputs found

    Carcass Compound Materials Base on Fluoropolymer for Tissue Engineering in Orthopedics

    Get PDF
    In this work new type of composite materials for application as coatings for intramedullary implants in the field of orthopaedics and traumatology is offered. Method is based on ability of fluoropolymers to act as biologically inert binding agent and ability of fine-dyspersated hydroxyapatite powders to act as biologically active filling agent providing osteoinduction and osteoconduction processes. Results of investigations of adhesion, elastic and morphometric characteristics of offered composite were presented; chemical composition was determined. Estimation of toxicological properties, locally irritant action and hemolytic activity of offered composites was done according to GOST R ISO 10993. In vivo tests were carried out; it was shown that offered composites didn’t cause any negative tissue reactions and stimulated osteogenesis processes in ectopic bone formation test. Key words: Carcass Compound Materials; fluoropolymers; orthopaedi

    ВозмоТности Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСской рСгуляции ΠΏΡƒΠ»Π° стволовых ΠΊΠ»Π΅Ρ‚ΠΎΠΊ

    Get PDF
    Modulating influence of electric impulses, visible light, some microelements is studied in parameters which are near to physio-logic ones on life activity of progenitor and mature cells of blood system in vitro and in situ. Content of granulocyte and fibroblastoid colony-forming units, concentration of colony-stimulating and colony-inhibiting activities, their concentration were determined , myelograms and morphologic signs of myelocariocytes apoptosis and necrosis were scored, saturation by chrom ions of peripheral blood erythrocytes was studied in mice bone marrow. The results showed that cell effects of physical-chemical influ-ences are small specific. Nevertheless, one may perform both positive and negative regulating influence on life activity of stromal precursors in dependence of energy density and stimulus concentration . The effect is due not only by direct but mediated reactions regulating direction and intensity of metabolic intracellular processes. It is suggested that one of target cells capable of change in-crease program of hemopoietic and stromal cells-progenitors of bone marrow in dependence of physical stimulus strength are lym-phocytes.ИсслСдовано ΠΌΠΎΠ΄ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ влияниС элСктричСских ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ², Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ свСта, Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… микроэлСмСнтов Π² ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°Ρ…, ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Ρ… ΠΊ физиологичСским, Π½Π° ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ€ΠΎΠ΄ΠΎΠ½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ Π·Ρ€Π΅Π»Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ систСмы ΠΊΡ€ΠΎΠ²ΠΈ in vitro ΠΈ in situ. Π’ костном ΠΌΠΎΠ·Π³Π΅ ΠΌΡ‹ΡˆΠ΅ΠΉ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»ΠΈΡΡŒ содСрТаниС Π³Ρ€Π°Π½ΡƒΠ»ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½Ρ‹Ρ… (ΠšΠžΠ•-Π“) ΠΈ фибробластоидных (ΠšΠžΠ•-Π€) ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ΅ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… Π΅Π΄ΠΈΠ½ΠΈΡ†, концСнтрация ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ΅ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ ΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ΅ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ активностСй, ΠΏΠΎΠ΄ΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΈΡΡŒ ΠΌΠΈΠ΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ ΠΈ морфологичСскиС ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π° ΠΈ Π½Π΅ΠΊΡ€ΠΎΠ·Π° ΠΌΠΈΠ΅Π»ΠΎΠΊΠ°Ρ€ΠΈΠΎΡ†ΠΈΡ‚ΠΎΠ², ΠΈΠ·ΡƒΡ‡Π°Π»ΠΎΡΡŒ насыщСниС ΠΈΠΎΠ½Π°ΠΌΠΈ Ρ…Ρ€ΠΎΠΌΠ° эритроцитов пСрифСричСской ΠΊΡ€ΠΎΠ²ΠΈ Π΄ΠΎΠ±Ρ€ΠΎΠ²ΠΎΠ»ΡŒΡ†Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ эффСкты Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских воздСйствий малоспСцифичны. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π² зависимости ΠΎΡ‚ плотности энСргии ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ раздраТитСля ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ ΠΊΠ°ΠΊ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ΅, Ρ‚Π°ΠΊ ΠΈ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ рСгуляторноС влияниС Π½Π° ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΊΡ€ΠΎΠ²Π΅Ρ‚Π²ΠΎΡ€Π½Ρ‹Ρ… ΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… прСкурсоров. ΠŸΡ€ΠΈ этом эффСкт обусловлСн Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ прямыми, Π½ΠΎ ΠΈ опосрСдованными Ρ‡Π΅Ρ€Π΅Π· ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΌΠΈΠΊΡ€ΠΎΠΎΠΊΡ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ рСакциями, Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΈΠ½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΡΡ‚ΡŒ мСтаболичСских Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… процСссов. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΈΠΌΠΈ ΠΈΠ· ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-мишСнСй, способных Π² зависимости ΠΎΡ‚ силы физичСского раздраТитСля ΠΏΠ΅Ρ€Π΅ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ роста ΠΊΡ€ΠΎΠ²Π΅Ρ‚Π²ΠΎΡ€Π½Ρ‹Ρ… ΠΈ ΡΡ‚Ρ€ΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ-ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊΠΎΠ² костного ΠΌΠΎΠ·Π³Π°, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Ρ‹

    ЗакономСрности Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ склСры послС ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ раствора циклоспорина А Ρƒ ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ² со стСроидной модСлью Π³Π»Π°ΡƒΠΊΠΎΠΌΡ‹

    Get PDF
    Β Aim. In an in vivo experiment, to study the effect of local intraoperative application of 0.05% cyclosporin A solution on the conjunctival and scleral regeneration after surgery on the rabbit eyes with steroid-inducedΒ  glaucoma.Materials and methods. At the first stage of the experiment, a model of steroid-induced glaucoma was reproduced for 29 male Californian rabbits by injecting 0.5 ml of a 0.4% solution of dexamethasone subconjunctivally in both eyes once a week for 3 months (12 subconjunctival injections for each rabbit). At the second stage of the experiment, after the development ofΒ  steroid glaucoma, the rabbits were divided into the main group, consistingΒ  of the subgroup Β«aΒ» (n = 8) and the subgroup Β«bΒ» (n = 8), and the comparison group (n = 8). All animals were performed a penetrating incision of the conjunctiva and a non-penetrating incision of the sclera of one of the eyes. A hemostatic sponge impregnated with 0.05% cyclosporin А solution was applied to the intervention area in the main group, in the subgroup Β«aΒ» – for 3 minutes, in the subgroup Β«bΒ» – for 6 minutes. In the comparison group, the cytostatic was not used.Results. The use of 0.05% cyclosporin А solution led to a decrease in theΒ  infiltration of fibroblasts and inflammatory cells into the area of surgicalΒ  injury. On the 4th day after the surgery, cell density in the intervention areaΒ  in the subgroup Β«aΒ» with 3-minute application of cytostatic-antimetabolite solution was 2.7 times lower (p = 0.043) than in the comparison group, while exceeding the values in the subgroup Β«bΒ» by 3.2 times (p = 0.036). The number of fibroblasts in the subgroups Β«aΒ» and Β«bΒ» was 3.6 (p = 0.043) and 12.8 times (p = 0.031) less than in the comparison group, and a shift in the cellular composition of the infiltrate towards the fibroblastic population occurred only on the 14th day after the surgery.Conclusion. Intraoperative application of 0.05% cyclosporin А solution significantly slows down the course of regeneration, reducing infiltrative inflammation in the intervention area, which prevents excessive scarring.  ЦСль. Π’ экспСримСнтС in vivo ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ влияниС мСстной ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ 0,05%-Π³ΠΎ раствора (Ρ€-Ρ€Π°) циклоспорина А Π½Π° Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ склСры  послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π° Π³Π»Π°Π·Π°Ρ… ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ² со стСроидной  Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. На I этапС экспСримСнта 29 самцам  ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ² калифорнийской ΠΏΠΎΡ€ΠΎΠ΄Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΒ  ΡΡ‚Π΅Ρ€ΠΎΠΈΠ΄Π½ΡƒΡŽ Π³Π»Π°ΡƒΠΊΠΎΠΌΡƒ ΠΏΡƒΡ‚Π΅ΠΌ ввСдСния ΠΏΠΎΠ΄ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²ΡƒΒ  ΠΎΠ±ΠΎΠΈΡ… Π³Π»Π°Π· 0,5 ΠΌΠ» 0,4%-Π³ΠΎ Ρ€-Ρ€Π° дСксамСтазона 1 Ρ€Π°Π· Π² Π½Π΅Π΄ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 3 мСс (12 ΠΈΠ½ΡŠΠ΅ΠΊΡ†ΠΈΠΉ). На II этапС экспСримСнта, послС развития стСроидной Π³Π»Π°ΡƒΠΊΠΎΠΌΡ‹, ΠΊΡ€ΠΎΠ»ΠΈΠΊΠΎΠ² Ρ€Π°Π·Π΄Π΅Π»ΠΈΠ»ΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹ Β«aΒ» (n = 8) ΠΈ ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹ Β«bΒ» (n = 8), ΠΈ Π³Ρ€ΡƒΠΏΠΏΡƒ сравнСния (n = 8). ВсСм ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ выполняли сквозной Ρ€Π°Π·Ρ€Π΅Π· ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ Π½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠΉ Π½Π°Π΄Ρ€Π΅Π· склСры ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π³Π»Π°Π·. На ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π² основной Π³Ρ€ΡƒΠΏΠΏΠ΅ Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π»ΠΈ Π³Π΅ΠΌΠΎΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π³ΡƒΠ±ΠΊΡƒ, ΠΏΡ€ΠΎΠΏΠΈΡ‚Π°Π½Π½ΡƒΡŽ 0,05%-ΠΌ Ρ€-Ρ€ΠΎΠΌ циклоспорина А, Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«Π°Β» Π½Π° 3 ΠΌΠΈΠ½, Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«bΒ» – Π½Π° 6 ΠΌΠΈΠ½. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ сравнСния цитостатик Π½Π΅ использовали.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ 0,05%-Π³ΠΎ Ρ€-Ρ€Π° циклоспорина А  ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ†ΠΈΠΈ Π·ΠΎΠ½Ρ‹ хирургичСской  Ρ‚Ρ€Π°Π²ΠΌΡ‹ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ ΠΈ фибробластами. На 4- Π΅ сут послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ клСточная ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Π² области Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ Β«Π°Β» основной Π³Ρ€ΡƒΠΏΠΏΡ‹ с Ρ‚Ρ€Π΅Ρ…ΠΌΠΈΠ½ΡƒΡ‚Π½ΠΎΠΉ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ Ρ€-Ρ€Π° цитостатика-Π°Π½Ρ‚ΠΈΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Π° Π±Ρ‹Π»Π° Π² 2,7 Ρ€Π°Π·Π° мСньшС (p = 0,043), Ρ‡Π΅ΠΌ Π²Β  Π³Ρ€ΡƒΠΏΠΏΠ΅ сравнСния, ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Ρ ΠΏΡ€ΠΈ этом ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹ Β«bΒ» Π² 3,2 Ρ€Π°Π·Π° (p = 0,036). Π§ΠΈΡΠ»Π΅Π½Π½ΠΎΡΡ‚ΡŒΒ  фибробластов Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… Β«Π°Β» ΠΈ Β«bΒ» Π±Ρ‹Π»Π° Π² 3,6 (p = 0,043) ΠΈ 12,8 Ρ€Π°Π·Π° (p = 0,031) Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ сравнСния. ΠŸΡ€ΠΈΒ  этом сдвиг ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ состава ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚Π° Π² сторону  фибробластичСской популяции ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ΅Π» Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° 14-Π΅Β  сут послС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ.Β Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π˜Π½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ аппликация 0,05%-Π³ΠΎ Ρ€- Ρ€Π° циклоспорина А сущСствСнно замСдляСт Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅Β  Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ-Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡΒ  ΠΈΠ½Ρ„ΠΈΠ»ΡŒΡ‚Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ΅ воспалСниС Π² Π·ΠΎΠ½Π΅ Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, Ρ‡Ρ‚ΠΎΒ  ΠΏΡ€Π΅Π΄ΠΎΡ‚Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ излишнСС Ρ€ΡƒΠ±Ρ†Π΅Π²Π°Π½ΠΈΠ΅.

    ΠŸΠ°Ρ‚ΠΎΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ особСнности Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ склСры Π½Π° Ρ„ΠΎΠ½Π΅ ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ раствора циклоспорина А

    Get PDF
    Purpose. In experiment in vivo to study the features of regeneration of the conjunctiva and sclera of rats after surgery with intraoperative application of a 0.05% Ciclosporin A.Materials and methods. Π•xperimental animals (rats) (n = 48) were divided into the main group, including the subgroups a (n = 16) and b (n = 16) and the comparison group (n = 16). Performed a through cut of the conjunctiva and damage to the surface layers of the sclera one of the eyes of all animals. Further on the surgical trauma zone in the main group, the intraoperative application of the cytostatic was performed. In the subgroup a with a duration of 3 minutes, in the subgroup b – 6 minutes. In the comparison group a hemostatic sponge without a cytostatic was used intraoperatively.Results. In the comparison group postoperative period proceeds with a stereotyped dynamics of cell phase changes in damaged tissues. In the end the development of dense conjunctival-scleral fusion in the area of surgical trauma was noted. Intraoperative application of 0.05% Cyclosporine A leads to a slowing of regeneration, preventing formation of rough conjunctival-scleral scar.Conclusions. Intraoperative applications of 0.05% Cyclosporin A change the stereotyped dynamics of the inflammatory-reparative regeneration in the surgical intervention zone, inhibiting the migration of cells almost in 3 times and significantly (in 2 times) prolonging the duration of the macrophage phase. This causes a slowdown of reparative regeneration, prevents excessive scarring in the operating area. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: Π² экспСримСнтС in vivo ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ особСнности Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ склСры крыс послС хирургичСского Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΈ ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ 0,05%-Π³ΠΎ раствора циклоспорина А.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Π΅ (самцы крыс, n = 48) Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Π³Ρ€ΡƒΠΏΠΏΡƒ, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΡƒΡŽ ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΡ‹ Π° (n = 16) ΠΈ b (n = 16), ΠΈ Π³Ρ€ΡƒΠΏΠΏΡƒ сравнСния (n = 16). ВсСм ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹ΠΌ выполняли сквозной Ρ€Π°Π·Ρ€Π΅Π· ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Ρ‹ ΠΈ Π½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΠΉ Π½Π°Π΄Ρ€Π΅Π· повСрхностных слоСв склСры ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π³Π»Π°Π·. На ΠΎΠ±Π»Π°ΡΡ‚ΡŒ хирургичСской Ρ‚Ρ€Π°Π²ΠΌΡ‹ Π² основной Π³Ρ€ΡƒΠΏΠΏΠ΅ Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π»Π°ΡΡŒ гСмостатичСская Π³ΡƒΠ±ΠΊΠ°, пропитанная 0,05%-ΠΌ раствором циклоспорина А: Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ 3 ΠΌΠΈΠ½, Π² ΠΏΠΎΠ΄Π³Ρ€ΡƒΠΏΠΏΠ΅ b – 6 ΠΌΠΈΠ½. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ сравнСния ΠΈΠ½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ Π½Π°ΠΊΠ»Π°Π΄Ρ‹Π²Π°Π»Π°ΡΡŒ гСмостатичСская Π³ΡƒΠ±ΠΊΠ° Π±Π΅Π· цитостатика.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΡ‹ сравнСния послСопСрационный ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π» со стСрСотипной Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ смСны ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ„Π°Π· Π² ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… тканях. Π’ исходС ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΏΠ»ΠΎΡ‚Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Π°Π»ΡŒΠ½ΠΎ-ΡΠΊΠ»Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ сращСния Π² Π·ΠΎΠ½Π΅ хирургичСской Ρ‚Ρ€Π°Π²ΠΌΡ‹. Π˜Π½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Π°Ρ аппликация 0,05%-ΠΌ раствором циклоспорина А ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ замСдлСнию Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, прСпятствовала Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π³Ρ€ΡƒΠ±ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡŠΡŽΠ½ΠΊΡ‚ΠΈΠ²Π°Π»ΡŒΠ½ΠΎ-ΡΠΊΠ»Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€ΡƒΠ±Ρ†Π°.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π˜Π½Ρ‚Ρ€Π°ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ†ΠΈΠΈ 0,05%-Π³ΠΎ раствора циклоспорина А ΠΌΠ΅Π½ΡΡŽΡ‚ ΡΡ‚Π΅Ρ€Π΅ΠΎΡ‚ΠΈΠΏΠ½ΡƒΡŽ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ тСчСния Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ-Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Π² Π·ΠΎΠ½Π΅ хирургичСского Π²ΠΌΠ΅ΡˆΠ°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°, подавляя практичСски Π² Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π° ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ (Π² Π΄Π²Π° Ρ€Π°Π·Π°) увСличивая ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³Π°Π»ΡŒΠ½ΠΎΠΉ Ρ„Π°Π·Ρ‹. Π­Ρ‚ΠΎ обусловливаСт Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΏΡ€Π΅ΠΏΡΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠΌΡƒ Ρ€ΡƒΠ±Ρ†Π΅Π²Π°Π½ΠΈΡŽ Π² ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·ΠΎΠ½Π΅.

    ИсслСдованиС Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π° a-C:H:SiOx ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ плазмохимичСского осаТдСния с использованиСм ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ биполярного смСщСния

    Get PDF
    Aim. To study platelet adhesion to a-C:H:SiOx film on titanium in an in vitro experiment to evaluate itsΒ antithrombogenic potential.Materials and methods. Thin (less than 1 ΞΌm) a-C:H:SiOx films were deposited on VT-6 titanium plates with aΒ size of 10 Γ— 10 mm2 and a thickness of 0.2 mm using a vacuum ion-plasma unit using pulsed bipolar bias. TheΒ surface roughness was evaluated according to GOST 2789-73 using an atomic force microscope. The test samplesΒ were cultured at 37 Β°C for 30 min in platelet-rich human blood plasma, prepared for scanning electron microscopy,Β after which the distribution density of blood plates adhering to the test coating was calculated.Results. With the same roughness index of the studied a-C:H:SiOx samples, the film decreased 116 times (inΒ comparison with untreated titanium) the platelet count per 1 mm2 of the surface.Conclusion. The deposition of a-C:H:SiOx thin film on the surface of VT-6 titanium alloy by PACVD methodΒ using pulsed bipolar bias significantly reduces the distribution density of platelets in comparison with an untreatedΒ metal surface. In vitro data suggest a significant antithrombogenic potential of this type of coating on the surfaceΒ of devices in contact with blood.ЦСль. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ Π² экспСримСнтС in vitro адгСзию Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΊ a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠ΅ Π½Π° Ρ‚ΠΈΡ‚Π°Π½Π΅ для ΠΎΡ†Π΅Π½ΠΊΠΈ Π΅Π΅Β Π°Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π°.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ΠΎΠ½ΠΊΠΈΠ΅ (ΠΌΠ΅Π½Π΅Π΅ 1 ΠΌΠΊΠΌ) a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠΈ наносили Π½Π° Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²Ρ‹Π΅ пластины ΠΌΠ°Ρ€ΠΊΠΈΒ Π’Π’-6 Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ 10 Γ— 10 ΠΌΠΌ2 ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½ΠΎΠΉ 0,2 ΠΌΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π°ΠΊΡƒΡƒΠΌΠ½ΠΎΠΉΒ  ΠΈΠΎΠ½Π½ΠΎ-ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ установки с использованиСм ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ биполярного смСщСния.Β  Π¨Π΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ повСрхности ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΠΎΠ³Π»Π°ΡΠ½ΠΎΒ Π“ΠžΠ‘Π’ 2789-73 с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-силового микроскопа. Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡ‹Π΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡ€ΠΈ 37 Β°CΒ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 30 ΠΌΠΈΠ½ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ, ΠΏΠΎΠ΄Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π»ΠΈ для ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉΒ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠΉ микроскопии, послС Ρ‡Π΅Π³ΠΎ подсчитывали ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒΒ  распрСдСлСния кровяных пластинок, Π°Π΄Π³Π΅Π·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊ исслСдуСмому ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΡŽ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΌ индСксС ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ исслСдуСмых ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² a-C:H:SiOx ΠΏΠ»Π΅Π½ΠΊΠ° Π² 116 раз сниТала (Π² сравнСнии с Π½Π΅ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌ Ρ‚ΠΈΡ‚Π°Π½ΠΎΠΌ) количСство  Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π½Π° 1 ΠΌΠΌ2 повСрхности.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π€ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° повСрхности Ρ‚ΠΈΡ‚Π°Π½ΠΎΠ²ΠΎΠ³ΠΎ сплава Π’Π’-6 Ρ‚ΠΎΠ½ΠΊΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ состава a-C:H:SiOxΒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ плазмохимичСского осаТдСния с использованиСм  ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠ³ΠΎ биполярного смСщСния Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ сниТаСт ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ распрСдСлСния  Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π² сравнСнии с Π½Π΅ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ мСталличСской ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ in vitro Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ сущСствСнный Π°Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π°Β ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠΉ Π½Π° повСрхности устройств, ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… с ΠΊΡ€ΠΎΠ²ΡŒΡŽ

    STIMULATING EFFECT OF HIGH DOSE HEPARIN ON MIGRATION ACTIVITY AND MSC STEMNESS PRESERVATION IN THE PRESENCE OF BONE-SUBSTITUTING MATERIALS

    Get PDF
    Synthetic materials used in regenerative medicine, upon implantation, induce the development of an inflammatory reaction necessary for the effective regeneration of damaged bone tissue. Implant contact with tissues is accompanied by the deposition of blood proteins and interstitial fluid on its surface, contributing to the activation of the complement system, components of innate immunity, initiating coagulation hemostasis, leading to the formation of a fibrin clot. An extracellular matrix based on fibrin, collagen and elastin forms on the implant’s surface, which provides the basis for the formation of tissue structure through the adhesion of stem cells to the forming bone callus before the formation of bone regenerate. To prevent the development of postoperative pathological conditions caused by hypercoagulable syndrome, therapeutic strategies are used to use anticoagulants (heparin, warfarin). However, their use limits the normal formation of a fibrin clot in vivo. This can slow down the migration of mesenchymal stem cells (MSC) and disrupt the formation of callus, inhibiting the processes of osseointegration of the implant and bone healing. The study’s goal was to study the effect of heparin in a gradient of low and high concentrations on the migration activity and stem capacity of human MSCs under in vitro cultivation conditions. According to the results of flow cytometry, it was revealed that high concentrations of heparin (130, 260 IU/ml) in a 2D cultivation model contribute to an increase in the number of cells expressing surface markers CD73 and CD90, which indicates that MSCs retain high clonogenic potential. A 3D model of in vitro cultivation with the addition of heparin and osteosubstituting implants bearing a CF coating with a roughness index of Ra = 2.6-4.9 ΞΌm contributed to preserving the β€œstemness” character of MSCs through the expression of surface markers CD73 and CD90. According to the results obtained using the xCELLigence system, heparin at a later time (from 20-40 hours) increases the invasion of MSCs through micropores that simulate the state of the blood vessel walls. However, in the presence of HAP nanoparticles that mimic the remodeling processes of the mineral bone matrix and/or resorption of bone cement, the effect of heparin was less pronounced. The results can be used in the field of regenerative medicine associated with the introduction of MSCs. The data can serve as a prerequisite for developing new therapeutic strategies for surgical patients with a high risk of postoperative thrombosis after osteosynthesis

    Mesenchymal stem cells: a brief review of classis concepts and new factors of osteogenic differentiation

    Get PDF
    Molecular genetic mechanisms, signaling pathways, cultural conditions, factors, and markers of osteogenic differentiation of mesenchymal stem cells (MSC) are actively studied despite numerous works in this area of cellular technologies. This is largely due to the accumulating contradictions in seemingly classical knowledge, as well as permanent updating of the results in the field. In this regard, we focused on the main classical concepts and some new factors and mechanisms that have a noticeable regulatory effect on the differentiation potential of postnatal MSCs. The present review considers the significance of MSC sources for their differentiation capacity, as well as the role of the cellular microenvironment. The issues of classification, terminology, and functional activity of MSCs from various sources are discussed. The paracrine potential of MSCs in tissue regeneration has been considered; sufficient importance of inflammation in osteogenesis is noted, in particular, the presence of inflammatory cytokines and chemokines in the lesion focus, produced not only by microenvironmental cells but also by blood cells, including mononuclear leukocytes, migrating to the affected site. An important role in this review is given to biomechanical signals and to influence of conformational changes in cell cytoskeleton (cell shape) upon MSC differentiation, since the morphological features of cells and the structure of cytoskeleton are modulated by interactions of the cell surface with environmental factors, including hydrostatic pressure, fluid flow, compression/stretching loads. The data are presented concerning elasticity of extracellular matrix being a determining factor of cell differentiation. We conclude that one should switch from point studies of individual gene effects to multiple measurements of the gene-regulatory profile and biomolecules responsible for multiple, still poorly studied osteogenic factors of endogenous and exogenous origin. Among cornerstones in future (epi)genetic studies will be to decide if osteomodulatory effects are realized through specific signaling pathways and/or via cross-signaling with known genes controlling osteogenic differentiation of MSCs
    • …
    corecore