25 research outputs found
Optimizing automated white matter hyperintensity segmentation in individuals with stroke
White matter hyperintensities (WMHs) are a risk factor for stroke. Consequently, many individuals who suffer a stroke have comorbid WMHs. The impact of WMHs on stroke recovery is an active area of research. Automated WMH segmentation methods are often employed as they require minimal user input and reduce risk of rater bias; however, these automated methods have not been specifically validated for use in individuals with stroke. Here, we present methodological validation of automated WMH segmentation methods in individuals with stroke. We first optimized parameters for FSL's publicly available WMH segmentation software BIANCA in two independent (multi-site) datasets. Our optimized BIANCA protocol achieved good performance within each independent dataset, when the BIANCA model was trained and tested in the same dataset or trained on mixed-sample data. BIANCA segmentation failed when generalizing a trained model to a new testing dataset. We therefore contrasted BIANCA's performance with SAMSEG, an unsupervised WMH segmentation tool available through FreeSurfer. SAMSEG does not require prior WMH masks for model training and was more robust to handling multi-site data. However, SAMSEG performance was slightly lower than BIANCA when data from a single site were tested. This manuscript will serve as a guide for the development and utilization of WMH analysis pipelines for individuals with stroke
The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke
The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
Chronic Stroke Sensorimotor Impairment Is Related to Smaller Hippocampal Volumes: An ENIGMA Analysis
Background.
Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper‐limb sensorimotor impairment. We investigated associations between non‐lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment.
Methods and Results.
Cross‐sectional T1‐weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta‐Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA‐UE (Fugl‐Meyer Assessment of Upper Extremity). Robust mixed‐effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni‐corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; β=0.16) but not contralesional (P=0.96; β=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; β=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; β=−0.26) and contralesional (P=0.006; β=−0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; β=−0.21) and extent of sensorimotor damage (P=0.003; β=−0.15).
Conclusions.
The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.S.-L.L. is supported by NIH K01 HD091283; NIH R01 NS115845. A.B. and M.S.K. are supported by National Health and Medical Research Council (NHMRC) GNT1020526, GNT1045617 (A.B.), GNT1094974, and Heart Foundation Future Leader Fellowship 100784 (A.B.). P.M.T. is supported by NIH U54 EB020403. L.A.B. is supported by the Canadian Institutes of Health Research (CIHR). C.M.B. is supported by NIH R21 HD067906. W.D.B. is supported by the Heath Research Council of New Zealand. J.M.C. is supported by NIH R00HD091375. A.B.C. is supported by NIH R01NS076348-01, Hospital Israelita Albert Einstein 2250-14, CNPq/305568/2016-7. A.N.D. is supported by funding provided by the Texas Legislature to the Lone Star Stroke Clinical Trial Network. Its contents are solely the responsibility of the authors and do not necessarily represent the of ficial views of the Government of the United States or the State of Texas. N.E.-B. is supported by Australian Research Council NIH DE180100893. W.F. is sup ported by NIH P20 GM109040. F.G. is supported by Wellcome Trust (093957). B.H. is funded by and NHMRC fellowship (1125054). S.A.K is supported by NIH P20 HD109040. F.B. is supported by Italian Ministry of Health, RC 20, 21. N.S. is supported by NIH R21NS120274. N.J.S. is supported by NIH/National Institute of General Medical Sciences (NIGMS) 2P20GM109040-06, U54-GM104941. S.R.S. is supported by European Research Council (ERC) (NGBMI, 759370). G.S. is supported by Italian Ministry of Health RC 18-19-20-21A. M.T. is sup ported by National Institute of Neurological Disorders and Stroke (NINDS) R01 NS110696. G.T.T. is supported by Temple University sub-award of NIH R24 –NHLBI (Dr Mickey Selzer) Center for Experimental Neurorehabilitation Training. N.J.S. is funded by NIH/National Institute of Child Health and Human Development (NICHD) 1R01HD094731-01A1
A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms.
Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research
Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis
Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15-90. The effects of dementia, mild cognitive impairment, Parkinson\u27s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia
Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis.
Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15–90. The effects of dementia, mild cognitive impairment, Parkinson’s disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p \u3c 0.001), while neither depression nor ADHD showed consistent associations with VLM scores (p \u3e 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders
Verbal Learning and Memory Deficits across Neurological and Neuropsychiatric Disorders: Insights from an ENIGMA Mega Analysis.
Deficits in memory performance have been linked to a wide range of neurological and neuropsychiatric conditions. While many studies have assessed the memory impacts of individual conditions, this study considers a broader perspective by evaluating how memory recall is differentially associated with nine common neuropsychiatric conditions using data drawn from 55 international studies, aggregating 15,883 unique participants aged 15-90. The effects of dementia, mild cognitive impairment, Parkinson's disease, traumatic brain injury, stroke, depression, attention-deficit/hyperactivity disorder (ADHD), schizophrenia, and bipolar disorder on immediate, short-, and long-delay verbal learning and memory (VLM) scores were estimated relative to matched healthy individuals. Random forest models identified age, years of education, and site as important VLM covariates. A Bayesian harmonization approach was used to isolate and remove site effects. Regression estimated the adjusted association of each clinical group with VLM scores. Memory deficits were strongly associated with dementia and schizophrenia (p 0.05). Differences associated with clinical conditions were larger for longer delayed recall duration items. By comparing VLM across clinical conditions, this study provides a foundation for enhanced diagnostic precision and offers new insights into disease management of comorbid disorders
Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke
BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes.
METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage.
RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38,
DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets