7 research outputs found

    Polymorphism in Non-Fullerene Acceptors Based on Indacenodithienothiophene

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] Organic solar cells incorporating non-fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology-function models. Here, it is confirmed that high-performing solution-processed indacenodithienothiophene-based NFAs, i.e., ITIC and its derivatives ITIC-M, ITIC-2F, and ITIC-Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low-temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low-temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the π–π stacking direction. As the optical absorption of the structurally more disordered low-temperature phase can surpass that of the more ordered polymorphs while displaying comparable—or even higher—charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.This work was supported by the Ministerio de Ciencia e Innovacion/FEDER (under Ref. PGC2018-094620-A-I00 and PGC2018-095411-B-I00, CEX2019-000917-S, and PGC2018-095411-B-100) and the Basque Country Government (Ref. PIBA19-0051). S.M. is grateful to POLYMAT for the doctoral scholarship. The authors thank A. Arbe, A. Alonso-Mateo, and L. Hueso for their support and access to characterization tools. The authors also thank the technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF). GIWAXS experiments were performed at BL11 NCD-SWEET beamline at ALBA Synchrotron (Spain) with the collaboration of ALBA staff. J.M and E.F.-G. acknowledge support through the European Union's Horizon 2020 research and innovation program, H2020-FETOPEN 01-2018-2020 (FET-Open Challenging Current Thinking), “LION-HEARTED,” Grant Agreement No. 828984. J.M and N.S. would like to thank the financial support provided by the IONBIKE RISE project, which received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 823989. N.S., A.K., and A.B. furthermore are grateful to the U.S. National Science Foundation (NSF) for support via Project No. 1905901 within NSF's Division of Materials Research. A.S. and M.C. acknowledge financial support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program “HEROIC,” Grant Agreement No. 638059. This work was partially carried out at Polifab, the micro- and nanotechnology center of the Politecnico di Milano. C.M. thanks the Knut and Alice Wallenberg Foundation for funding through the project “Mastering Morphology for Solution-borne Electronics.” A.I. thanks MICINN for a Personal Técnico de Apoyo contract (PTA2017-14359-I) and gratefully acknowledge the financial support of the Basque Government (Research Groups IT-1175-19) and the MICINN (PGC2018-094548-B-I00, MCIU/AEI/FEDER, UE. Funding for open access charge: Universidade da Coruña/CISUG.Gobierno Vasco; PIBA19-0051Gobierno Vasco; IT-1175-19Estados Unidos. National Science Foundation; 190590

    Influence of Local Polar Environment on the Optoelectronics of Polymeric Semiconductors

    No full text
    Macroscopic optoelectronic device properties of polymer semiconductors are inherently dictated by processes that occur at molecular length scales. These light-matter interactions are particularly sensitive to the local characteristics of such plastics, including their molecular structure, chain conformation, aggregation, and their local environment. For example, the absorption and emission transitions of semiconducting polymers, central to photonic and optoelectronic device functions, are appreciably affected by the local polarity of their surroundings. This phenomenon has been well investigated for polymer interactions with polar solvents in the solution phase, but the influence of the local polar surroundings in the solid state is less explored. In this thesis, the local environment of semiconducting polymers in the solid state is manipulated, via solution-based blending with polar ferroelectric polymers, to establish a detailed picture of their optoelectronic landscape in such environments. Starting with a model system based on the archetypal semiconducting polymer, poly(3-hexylthiophene) (P3HT), and a polar commodity homo-polymer, poly(vinylidene difluoride) (PVDF), vitrification is utilized, often leading to intermixing in blends, as a tool to produce a diverse set of local solid-state structures. Increased intermixing between the polymers has a direct consequence on the semiconductors’ properties, where finely intermixed, vitrified blends possess a temperature dependence on the inter- and intra-chain exciton coupling, tentatively attributed to localized polar fluctuations in tandem with PVDF segmental relaxation. In surroundings of varying polarity, manipulated by the use of VDF-based co-polymers, a further reduction in inter-chain coupling and enhanced photoluminescence is obtained, possibly arising from interactions with ferroelectric nano-domains exhibited, e.g. by VDF-based ter-polymers. Furthermore, the broader applicability of blending is explored to tune the local environment of other semiconducting homo-polymers as well as new generation “push-pull” donor-acceptor semiconductors. Finally, insights gained on thermodynamic and kinetic vitrification strategies are applied to understand the intermixing behavior between polymer donors and fullerene/non-fullerene acceptors. This thesis, overall, advances fundamental understanding of the sensitivity of multicomponent functional polymer-based systems on their local environment, particularly, the dependence of organic optoelectronic properties on the local structure and polar landscape surrounding the molecules in the solid state. Furthermore, the structure/processing/property relations established in this thesis will provide a platform to design new multicomponent materials systems with multifunctional architectures for applications ranging from organic photovoltaics and light emitting diodes to resistive switches for memory devices.Ph.D

    Coexisting Glassy Phases with Different Compositions in NFA-Based Bulk Heterojunctions

    No full text
    Organic solar cell (OSC) bulk heterojunctions (BHJ) typically feature a rich phase morphology with the phase composition and distribution significantly affecting processes such as charge generation, recombination and extraction, and in turn, device performance. While fullerene-based BHJs are relatively well understood structurally, especially when blends with a flexible-chain donor are employed, donor: non-fullerene acceptor (NFA) blends are more challenging to elucidate. The reason is that NFAs often display different polymorphs; moreover, their glassy states can be complex. Focusing on blends of the widely investigated donor polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT), and the prototype NFA, 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (ITIC), we reveal here the coexistence of two glassy phases: a molecularly intermixed and an ITIC-rich one. In P3HT-rich blends, both glassy phases are present as nanosized domains, evenly distributed in the BHJ, as visualized via vapor phase infiltration (VPI) “staining”. In contrast, the 1:1 (by weight) and NFA-rich blends show clear, lateral phase separation between large (>500 nm) domains of the glassy phases and thinner polymer-rich domains that are unaffected by annealing. Our observations help to explain earlier P3HT: ITIC device studies; and also highlight the complexity of NFA-based BHJs, emphasizing the need for a deeper understanding of the phase behavior of such systems

    The hole in the bucky: Structure-property mapping of closed-: Vs. open-cage fullerene solar-cell blends via temperature/composition phase diagrams

    No full text
    The morphology development of polymer-based blends, such as those used in organic photovoltaic (OPV) systems, typically arrests in a state away from equilibrium-how far from equilibrium this is will depend on the materials chemistry and the selected assembly parameters/environment. As a consequence, small changes during the blend assembly alter the solid-structure development from solution and, in turn, the final device performance. Comparing an open-cage ketolactam fullerene with the prototypical[6,6]-phenyl-C61-butyric acid methyl ester in blends with poly[2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT), we demonstrate that experimentally established, non-equilibrium temperature/composition phase diagrams can be useful beyond rationalization of optimum blend composition for OPV device performance. Indeed, they can be exploited as tools for rapid, qualitative structure-property mapping, providing insights into why apparent similar donor:acceptor blends display different optoelectronic processes resulting from changes in the phase-morphology formation induced by the different chemistries of the fullerenes

    Toward Fast Screening of Organic Solar Cell Blends

    No full text
    The ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar-cell platform toward larger-area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high-efficiency poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophen-5,5'''-diyl)] (PCE11):phenyl-C61-butyric acid-methyl-ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight-forward thermal analysis, vapor-phase-infiltration imaging, and transient-absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin-film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained
    corecore