12 research outputs found

    Pleuro-pulmonary tumours detected by clinical and chest X-ray analyses in rats transplanted with mesothelioma cells

    Get PDF
    New strategies for cancer therapy must be developed, especially in severe neoplasms such as malignant pleural mesothelioma. Animal models of cancer, as close as possible to the human situation, are needed to investigate novel therapeutical approaches. Orthotopic transplantation of cancer cells is then relevant and efforts should be made to follow up tumour evolution in animals. In the present study, we developed a method for the orthotopic growth of mesothelioma cells in the pleural cavity of Fischer 344 and nude rats, along with a procedure for clinical survey. Two mesothelioma cell lines, of rat and human origin, were inoculated by transthoracic puncture. Body weight determination and chest X-ray analyses permitted the follow-up of tumour evolution by identifying different stages. Autopsies showed that tumours localized on the whole pleural cavity (diaphragm, parietal pleura), mediastinum and pericardium. Tumour morphology and antigenic characteristics were consistent with those of the inoculated cells and were similar in both types of rats inoculated with the same cell type. These results demonstrate that mesothelioma formation in rats can be followed up by clinical and radiographic survey after gentle intrathoracic inoculation of mesothelioma cells, thus allowing the definition of stages of interest for further experimental trials. © 1999 Cancer Research Campaig

    Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation

    Get PDF
    Knowledge of the function of the cell cycle checkpoints in tumour cells may be important to develop treatment strategies for human cancers. The protein p53 is an important factor that regulates cell cycle progression and apoptosis in response to drugs. In human malignant mesothelioma, p53 is generally not mutated, but may be inactivated by SV40 early region T antigen (SV40 Tag). However, the function of p53 has not been investigated in mesothelioma cells. Here, we investigated the function of the cell cycle checkpoints in six human mesothelioma cell lines (HMCLs) by studying the cell distribution in the different phases of the cell cycle by flow cytometry, and expression of cell cycle proteins, p53, p21WAF1/CIP1 and p27KIP1. In addition, we studied p53 gene mutations and expression of SV40 Tag. After exposure to γ-radiation, HMCLs were arrested either in one or both phases of the cell cycle, demonstrating a heterogeneity in cell cycle control. G1 arrest was p21WAF1/CIP1- and p53-dependent. Lack of arrest in G1 was not related to p53 mutation or binding to SV40 Tag, except in one HMCL presenting a missense mutation at codon 248. These results may help us to understand mesothelioma and develop new treatments

    In vitro response of rat pleural mesothelial cells to talc samples in genotoxicity assays (sister chromatid exchanges and DNA repair)

    No full text
    International audienceThe genotoxicity of three samples of talc has been determined using in vitro cell systems previously developed for testing asbestos fibres. The talc samples used consisted of particles of respirable size in order to test the effect of particles likely to be deposited in the lung. Genotoxicity was tested in cultures of rat pleural mesothelial cells (RPMC) using genotoxicity assays for unscheduled DNA synthesis (UDS) and sister chromatid exchanges (SCEs). The effects were compared with those obtained with negative controls (attapulgite and anatase) and positive controls (chrysotile and crocidolite asbestos). In contrast to asbestos, none of the talc samples, nor the negative controls, induced enhancement of UDS or SCEs in treated cultures in comparison with the untreated cultures
    corecore