36 research outputs found

    Features characterizing the surface state of HV insulator glass model under desert pollution

    Get PDF
    This paper deals with the monitoring of the surface state of HV insulator model under discontinuous layer of pollution. Natural desert sand is used to simulate the pollution influence in Algerian Sahara regions. Experimental tests are carried out on a glass plane model of 1512L cap-pin insulator largely used in the said regions. Leakage current LC signal is recorded for different positions and widths of the polluted-band. First, the obtained results are discussed to describe the behavior of the insulator model. For each configuration, time-frequency decomposition is established using Discrete Wavelet Transform (DWT) for information extraction corresponding to the flashover process. Decomposition results indicate that the detail D3 is highly correlated with the measured LC signal. Recurrence Plot (RP) technique and Recurrence Quantification Analysis (RQA) are applied to quantify the temporal patterning in LC signal, giving information on the position and width of the polluted-band on the insulating surface. It was found that RQA indicators increase with the polluted-band width according to the position of this polluted-band. Based on the plan model, the findings demonstrate the capability of RQA indicators for the glass insulator monitoring, providing information on the width and position of the polluted-band on its surface

    Detection and classification of lamination faults in A 15 kVA three-phase transformer core using SVM, KNN and DT algorithms

    Get PDF
    This paper deals with the detection and classification of two types of lamination faults (i.e., edge burr and lamination insulation faults) in a three-phase transformer core. Previous experimental results are exploited, which are obtained by employing a 15 kVA transformer under healthy and faulty conditions. Different test conditions were considered such as the flux density, number of the affected laminations, and fault location. Indeed, the current signals were used where four features (Average, Fundamental, Total Harmonic Distortion (THD), and Standard Deviation (STD)) were extracted. Elaborating A total of 328 samples, these features are utilized as input vectors to train and test classification models based on SVM, KNN, and DT algorithms. Based on the selected features, the results confirmed that the transformer current can be used for the detection of lamination faults. An accuracy rate of more than 84% was obtained using three different classifiers. Such findings provided a promising step toward fault detection and classification in electrical transformers, helping to prevent the system and avoid other related issues such as the increase in power loss and temperature

    CYP2C19 expression modulates affective functioning and hippocampal subiculum volume-a large single-center community-dwelling cohort study.

    Get PDF
    Given controversial findings of reduced depressive symptom severity and increased hippocampus volume in CYP2C19 poor metabolizers, we sought to provide empirical evidence from a large-scale single-center longitudinal cohort in the community-dwelling adult population-Colaus|PsyCoLaus in Lausanne, Switzerland (n = 4152). We looked for CYP2C19 genotype-related behavioral and brain anatomy patterns using a comprehensive set of psychometry, water diffusion- and relaxometry-based magnetic resonance imaging (MRI) data (BrainLaus, n = 1187). Our statistical models tested for differential associations between poor metabolizer and other metabolizer status with imaging-derived indices of brain volume and tissue properties that explain individuals' current and lifetime mood characteristics. The observed association between CYP2C19 genotype and lifetime affective status showing higher functioning scores in poor metabolizers, was mainly driven by female participants (ß = 3.9, p = 0.010). There was no difference in total hippocampus volume between poor metabolizer and other metabolizer, though there was higher subiculum volume in the right hippocampus of poor metabolizers (ß = 0.03, p <sub>FDRcorrected</sub> = 0.036). Our study supports the notion of association between mood phenotype and CYP2C19 genotype, however, finds no evidence for concomitant hippocampus volume differences, with the exception of the right subiculum

    Topography of associations between cardiovascular risk factors and myelin loss in the ageing human brain.

    Get PDF
    Our knowledge of the mechanisms underlying the vulnerability of the brain's white matter microstructure to cardiovascular risk factors (CVRFs) is still limited. We used a quantitative magnetic resonance imaging (MRI) protocol in a single centre setting to investigate the cross-sectional association between CVRFs and brain tissue properties of white matter tracts in a large community-dwelling cohort (n = 1104, age range 46-87 years). Arterial hypertension was associated with lower myelin and axonal density MRI indices, paralleled by higher extracellular water content. Obesity showed similar associations, though with myelin difference only in male participants. Associations between CVRFs and white matter microstructure were observed predominantly in limbic and prefrontal tracts. Additional genetic, lifestyle and psychiatric factors did not modulate these results, but moderate-to-vigorous physical activity was linked to higher myelin content independently of CVRFs. Our findings complement previously described CVRF-related changes in brain water diffusion properties pointing towards myelin loss and neuroinflammation rather than neurodegeneration

    Fast reproducible identification and large-scale databasing of individual functional cognitive networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level.</p> <p>Results</p> <p>81 subjects were successfully scanned. Before describing inter-individual variability, we demonstrated in the present study the reliability of individual functional data obtained with this short protocol. Considering the anatomical variability, we then needed to correctly describe individual functional networks in a voxel-free space. We applied then non-voxel based methods that automatically extract main features of individual patterns of activation: group analyses performed on these individual data not only converge to those reported with a more conventional voxel-based random effect analysis, but also keep information concerning variance in location and degrees of activation across subjects.</p> <p>Conclusion</p> <p>This collection of individual fMRI data will help to describe the cerebral inter-subject variability of the correlates of some language, calculation and sensorimotor tasks. In association with demographic, anatomical, behavioral and genetic data, this protocol will serve as the cornerstone to establish a hybrid database of hundreds of subjects suitable to study the range and causes of variation in the cerebral bases of numerous mental processes.</p

    The Ras Antagonist, Farnesylthiosalicylic Acid (FTS), Decreases Fibrosis and Improves Muscle Strength in dy2J/dy2J Mouse Model of Muscular Dystrophy

    Get PDF
    The Ras superfamily of guanosine-triphosphate (GTP)-binding proteins regulates a diverse spectrum of intracellular processes involved in inflammation and fibrosis. Farnesythiosalicylic acid (FTS) is a unique and potent Ras inhibitor which decreased inflammation and fibrosis in experimentally induced liver cirrhosis and ameliorated inflammatory processes in systemic lupus erythematosus, neuritis and nephritis animal models. FTS effect on Ras expression and activity, muscle strength and fibrosis was evaluated in the dy2J/dy2J mouse model of merosin deficient congenital muscular dystrophy. The dy2J/dy2J mice had significantly increased RAS expression and activity compared with the wild type mice. FTS treatment significantly decreased RAS expression and activity. In addition, phosphorylation of ERK, a Ras downstream protein, was significantly decreased following FTS treatment in the dy2J/dy2J mice. Clinically, FTS treated mice showed significant improvement in hind limb muscle strength measured by electronic grip strength meter. Significant reduction of fibrosis was demonstrated in the treated group by quantitative Sirius Red staining and lower muscle collagen content. FTS effect was associated with significantly inhibition of both MMP-2 and MMP-9 activities. We conclude that active RAS inhibition by FTS was associated with attenuated fibrosis and improved muscle strength in the dy2J/dy2J mouse model of congenital muscular dystrophy

    The 16p11.2 locus modulates brain structures common to autism, schizophrenia and obesity

    Get PDF
    Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique opportunity to study the intermediate phenotypes in carriers at high risk for autism spectrum disorder (ASD) or schizophrenia (SZ). We investigated the variation in brain anatomy in 16p11.2 deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we show that the number of genomic copies negatively correlated to the gray matter volume and white matter tissue properties in cortico-subcortical regions implicated in reward, language and social cognition. Despite the near absence of ASD or SZ diagnoses in our 16p11.2 cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-established structural abnormalities in ASD and SZ. Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will help interpret the relative contributions of genes to neuropsychiatric conditions by measuring their effect on local brain anatomy

    Considerations on earthing impedance measurement using low-magnitude variable-frequency currents

    No full text
    This paper deals with the measurement of earthing impedance of systems subjected to low magnitude variable-frequency currents. Measurement fundamentals are briefly discussed and some factors that can influence the results are underlined. Experimental investigations are conducted to examine the impact of certain selected factors namely, the length of the test leads and the angle between them as well as the wire length between voltage transducer and injection point. At low frequencies, the results indicate that long test leads with a 90 degree angle represents the best measurement configuration. This configuration is considered for high frequency where the effect of the test wire length is studied. The results show that the length of the measurement wire results in a significant inductive component, which has different magnitude and occurs at different frequencies according to the wire length and the impedance of the earthing system. Such findings may help pave the way for the initiation of the standardization in the measurement of high frequency impedance of earthing systems
    corecore