94 research outputs found

    Investigation of diffusion of ferrocene and ferricenium in aqueous and organic medium using voltammetry techniques

    Get PDF
    ABSTRACT The electrochemical behavior and diffusion of ferrocene and ferricenium in aqueous and organic medium was investigated by voltammetry on a platinum electrode. Both the ferrocene molecules and the ferricenium cations still show redox activity in both aqueous solution containing sulfuric acid and in dichloromethane solution containing tetrabutylammonium tetrafluoroborate. The results indicated that redox reactions of ferrocene/ ferricenium couple were a reversible process of diffusion-controlled single electron transfer in both studied solutions. The anodic and the cathodic peak potentials, as well as the corresponding anodic and cathodic peak currents, were obtained at different scan rates (0.05, 0.10, 0.30, 0.50 V.s -1 ). The diffusion coefficients have been calculated using the Randles-Sevcik equation; calculations show that the diffusion coefficients of ferrocene and ferricenium in aqueous solutions are smaller than those in organic solution

    Genomic Content of Bordetella pertussis Clinical Isolates Circulating in Areas of Intensive Children Vaccination

    Get PDF
    BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates expressing less or modified vaccine antigens

    The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages

    Get PDF
    Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol

    Infection of Cultured Human Endothelial Cells by Legionella pneumophila

    Get PDF
    Legionella pneumophila is a gram-negative pathogen that causes a severe pneumonia known as Legionnaires' disease. Here, we demonstrate for the first time that L. pneumophila infects and grows within cultured human endothelial cells. Endothelial infection may contribute to lung damage observed during Legionnaires' disease and to systemic spread of this organism

    Non-Opsonic Phagocytosis of Legionella pneumophila by Macrophages Is Mediated by Phosphatidylinositol 3-Kinase

    Get PDF
    Background: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires ’ disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. Methodology/Principal Findings: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32 P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85a subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. Conclusion/Significance: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies fo

    Calcium Influx Rescues Adenylate Cyclase-Hemolysin from Rapid Cell Membrane Removal and Enables Phagocyte Permeabilization by Toxin Pores

    Get PDF
    Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC− toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux

    Adenylate Cyclase Toxin Promotes Internalisation of Integrins and Raft Components and Decreases Macrophage Adhesion Capacity

    Get PDF
    Bordetella pertussis, the bacterium that causes whooping cough, secretes an adenylate cyclase toxin (ACT) that must be post-translationally palmitoylated in the bacterium cytosol to be active. The toxin targets phagocytes expressing the CD11b/CD18 integrin receptor. It delivers a catalytic adenylate cyclase domain into the target cell cytosol producing a rapid increase of intracellular cAMP concentration that suppresses bactericidal functions of the phagocyte. ACT also induces calcium fluxes into target cells. Biochemical, biophysical and cell biology approaches have been applied here to show evidence that ACT and integrin molecules, along with other raft components, are rapidly internalized by the macrophages in a toxin-induced calcium rise-dependent process. The toxin-triggered internalisation events occur through two different routes of entry, chlorpromazine-sensitive receptor-mediated endocytosis and clathrin-independent internalisation, maybe acting in parallel. ACT locates into raft-like domains, and is internalised, also in cells devoid of receptor. Altogether our results suggest that adenylate cyclase toxin, and maybe other homologous pathogenic toxins from the RTX (Repeats in Toxin) family to which ACT belongs, may be endowed with an intrinsic capacity to, directly and efficiently, insert into raft-like domains, promoting there its multiple activities. One direct consequence of the integrin removal from the cell surface of the macrophages is the hampering of their adhesion ability, a fundamental property in the immune response of the leukocytes that could be instrumental in the pathogenesis of Bordetella pertussis

    O Antigen Allows B. parapertussis to Evade B. pertussis Vaccine–Induced Immunity by Blocking Binding and Functions of Cross-Reactive Antibodies

    Get PDF
    Although the prevalence of Bordetella parapertussis varies dramatically among studies in different populations with different vaccination regimens, there is broad agreement that whooping cough vaccines, composed only of B. pertussis antigens, provide little if any protection against B. parapertussis. In C57BL/6 mice, a B. pertussis whole-cell vaccine (wP) provided modest protection against B. parapertussis, which was dependent on IFN-γ. The wP was much more protective against an isogenic B. parapertussis strain lacking O-antigen than its wild-type counterpart. O-antigen inhibited binding of wP–induced antibodies to B. parapertussis, as well as antibody-mediated opsonophagocytosis in vitro and clearance in vivo. aP–induced antibodies also bound better in vitro to the O-antigen mutant than to wild-type B. parapertussis, but aP failed to confer protection against wild-type or O antigen–deficient B. parapertussis in mice. Interestingly, B. parapertussis–specific antibodies provided in addition to either wP or aP were sufficient to very rapidly reduce B. parapertussis numbers in mouse lungs. This study identifies a mechanism by which one pathogen escapes immunity induced by vaccination against a closely related pathogen and may explain why B. parapertussis prevalence varies substantially between populations with different vaccination strategies

    Chemical Genetics Reveals Bacterial and Host Cell Functions Critical for Type IV Effector Translocation by Legionella pneumophila

    Get PDF
    Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions

    Differential Expression of Alpha 4 Integrins on Effector Memory T Helper Cells during Bordetella Infections. Delayed Responses in Bordetella pertussis

    Get PDF
    Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, a respiratory disease that is reemerging worldwide. Mechanisms of selective lymphocyte trafficking to the airways are likely to be critical in the immune response to this pathogen. We compared murine infection by B. pertussis, B. parapertussis, and a pertussis toxin-deleted B. pertussis mutant (BpΔPTX) to test the hypothesis that effector memory T-helper cells (emTh) display an altered pattern of trafficking receptor expression in B. pertussis infection due to a defect in imprinting. Increased cell recruitment to the lungs at 5 days post infection (p.i.) with B. parapertussis, and to a lesser extent with BpΔPTX, coincided with an increased frequency of circulating emTh cells expressing the mucosal-associated trafficking receptors α4β7 and α4β1 while a reduced population of these cells was observed in B. pertussis infection. These cells were highly evident in the blood and lungs in B. pertussis infection only at 25 days p.i. when B. parapertussis and BpΔPTX infections were resolved. Although at 5 days p.i., an equally high percentage of lung dendritic cells (DCs) from all infections expressed maturation markers, this expression persisted only in B. pertussis infection at 25 days p.i. Furthermore, at 5 days p.i with B. pertussis, lung DCs migration to draining lymph nodes may be compromised as evidenced by decreased frequency of CCR7+ DCs, inhibited CCR7-mediated in vitro migration, and fewer DCs in lung draining lymph nodes. Lastly, a reduced frequency of allogeneic CD4+ cells expressing α4β1 was detected following co-culture with lung DCs from B. pertussis-infected mice, suggesting a defect in DC imprinting in comparison to the other infection groups. The findings in this study suggest that B. pertussis may interfere with imprinting of lung-associated trafficking receptors on T lymphocytes leading to extended survival in the host and a prolonged course of disease
    • …
    corecore