9 research outputs found

    Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea

    No full text
    Globally, chickpea production is severely affected by salinity stress. Understanding the genetic basis for salinity tolerance is important to develop salinity tolerant chickpeas. A recombinant inbred line (RIL) population developed using parental lines ICCV 10 (salt-tolerant) and DCP 92-3 (salt-sensitive) was screened under field conditions to collect information on agronomy, yield components, and stress tolerance indices. Genotyping data generated using Axiom®CicerSNP array was used to construct a linkage map comprising 1856 SNP markers spanning a distance of 1106.3 cM across eight chickpea chromosomes. Extensive analysis of the phenotyping and genotyping data identified 28 quantitative trait loci (QTLs) explaining up to 28.40% of the phenotypic variance in the population. We identified QTL clusters on CaLG03 and CaLG06, each harboring major QTLs for yield and yield component traits under salinity stress. The main-effect QTLs identified in these two clusters were associated with key genes such as calcium-dependent protein kinases, histidine kinases, cation proton antiporter, and WRKY and MYB transcription factors, which are known to impart salinity stress tolerance in crop plants. Molecular markers/genes associated with these major QTLs, after validation, will be useful to undertake marker-assisted breeding for developing better varieties with salinity tolerance

    Cloning and characterization of a gene encoding novel zinc finger protein transcription factor induced under water deficit stress from rice (<i style="">Oryza sativa</i>) <i>cv</i>. N-22

    No full text
    36-41A gene OsZnI encoding Cys3/His1-type zinc finger protein was isolated from the water stress-induced cDNA library of rice (Oryza sativa) cv. N-22, an early maturing, deep-rooted, drought-tolerant genotype adapted to upland conditions. The in-silico analysis revealed an insert of 800 bp with an ORF of 663 nucleotides, encoding 221 amino acids. OsZnI had three distinct features — nuclear localization signal (NLS) present in Arg152-Arg168, Zn finger domain between 185-193 amino acids and 12 amino acids conserved domain in 71-82 amino acids homologous to LEA motif, and belonged to C-type family of Zn finger protein. OsZnI showed induced expression under water deficit stress

    Recent advances in molecular breeding of drought tolerance in rice (<i style="">Oryza sativa </i>L.)

    No full text
    233-251Rice is an ideal plant species for genomic studies for its relative small genome size (~430 Mb), diploid origin (2x=24) and close relationship with other important crops. Rice has been grown under diverse ecological conditions and gets exposed to different environmental stresses like drought, salinity, cold, etc. Drought is generally avoided in irrigated rice production system but it is more prone to 63.5 mha of rainfed rice grown annually in different parts of world. Severe osmotic stress causes detrimental changes in cellular components. Yet in response to various environmental stresses, plants have developed different physiological and biochemical strategies to adapt stress conditions, such as, stress associated changes in metabolites and amino acids (proline), amines (glycin-betaine and polyamines), and variety of sugar and sugar alcohols (manitol and trehalose). There is also activation of cascade of molecular networks involved in stress perception, signal transduction and the expression of specific stress related genes. To understand these genetically complex mechanisms of abiotic stress tolerance, an integrated approach of molecular breeding, classical physiology and conventional breeding is necessary, and the present review is an effort to deal these issues

    Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea

    No full text
    <p>Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of <i>Arabidopsis</i>. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with <i>Car</i>-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.</p

    Using AFLP-RGA markers to assess genetic diversity among pigeon pea (Cajanus cajan) genotypes in relation to major diseases

    No full text
    Resistance gene analog (RGA)-anchored amplified fragment length polymorphism (AFLP-RGA) marker system was used in order to evaluate genetic relationships among 22 pigeon pea genotypes with varied responses to Fusarium wilt and sterility mosaic disease. Five AFLP-RGA primer combinations (E-CAG/wlrk-S, M-GTG/wlrk-S, M-GTG/wlrk-AS, E-CAT/S1-INV and E-CAG/wlrk-AS) produced 173 scorable fragments, of which 157 (90.7%) were polymorphic, with an average of 31.4 fragments per primer combination. The polymorphism rates obtained with the five primers were 83.3%, 92.0%, 92.3%, 93.0% and 93.1%, respectively. Mean polymorphic information content (PIC) values ranged from 0.24 (with E-CAT/S1-INV) to 0.30 (with E-CAG/wlrk-AS), whereas resolving power (RP) values varied from 11.06 (with M-GTG/wlrk-S) to 25.51 (with E-CAG/wlrk-AS) and marker index (MI) values ranged from 5.98 (with M-GTG/wlrk-S) to 12.30 (with E-CAG/wlrk-AS). We identified a positive correlation between MI and RP (r²=0.98, p<0.05), stronger that that observed for the comparison between PIC and RP (r²=0.88, p<0.05). That implies that either MI or RP is the best parameter for selecting more informative AFLP-RGA primer combinations. The Jaccard coefficient ranged from 0.07 to 0.72, suggesting a broad genetic base in the genotypes studied. A neighbor-joining tree, based on the unweighted pair group method with arithmetic mean, distinguished cultivated species from wild species. The grouping of resistant genotypes in different clusters would help in the selection of suitable donors for resistance breeding in pigeon pea

    Translational Chickpea Genomics Consortium to Accelerate Genetic Gains in Chickpea (Cicer arietinum L.)

    No full text
    The Translational Chickpea Genomics Consortium (TCGC) was set up to increase the production and productivity of chickpea (Cicer arietinum L.). It represents research institutes from six major chickpea growing states (Madhya Pradesh, Maharashtra, Andhra Pradesh, Telangana, Karnataka and Uttar Pradesh) of India. The TCGC team has been engaged in deploying modern genomics approaches in breeding and popularizing improved varieties in farmers&rsquo; fields across the states. Using marker-assisted backcrossing, introgression lines with enhanced drought tolerance and fusarium wilt resistance have been developed in the genetic background of 10 elite varieties of chickpea. Multi-location evaluation of 100 improved lines (70 desi and 30 kabuli) during 2016&ndash;2017 and 2018&ndash;2019 enabled the identification of top performing desi and kabuli lines. In total, 909 Farmer Participatory Varietal Selection trials were conducted in 158 villages in 16 districts of the five states, during 2017&ndash;2018, 2018&ndash;2019, and 2019&ndash;2020, involving 16 improved varieties. New molecular breeding lines developed in different genetic backgrounds are potential candidates for national trials under the ICAR-All India Coordinated Research Project on Chickpea. The comprehensive efforts of TCGC resulted in the development and adoption of high-yielding varieties that will increase chickpea productivity and the profitability of chickpea growing farmers
    corecore