18 research outputs found

    Improved MPS Methods for Refined Simulation of Free-Surface Hydrodynamic Flows

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    GPU-acceleration for Moving Particle Semi-Implicit method

    Get PDF
    The MPS (Moving Particle Semi-implicit) method has been proven useful in computation free-surface hydrodynamic flows. Despite its applicability, one of its drawbacks in practical application is the high computational load. On the other hand, Graphics Processing Unit (GPU), which was originally developed for acceleration of computer graphics, now provides unprecedented capability for scientific computations. The main objective of this study is to develop a GPU-accelerated MPS code using CUDA (Compute Unified Device Architecture) language. Several techniques have been shown to optimize calculations in CUDA. In order to promote the acceleration by GPU, particular attentions are given to both the search of neighboring particles and the iterative solution of simultaneous linear equations in the Poisson Pressure Equation. In this paper, 2-dimensional calculations of elliptical drop evolution and dam break flow have been carried out by the GPU-accelerated MPS method, and the accuracy and performance of GPU-based code are investigated by comparing the results with those by CPU. It is shown that results of GPU-based calculations can be obtained much faster with the same reliability as the CPU-based ones

    Modelling of Violent Water Wave Propagation and Impact by Incompressible SPH with First-Order Consistent Kernel Interpolation Scheme

    Get PDF
    The Smoothed Particle Hydrodynamics (SPH) method has proven to have great potential in dealing with the wave–structure interactions since it can deal with the large amplitude and breaking waves and easily captures the free surface. The paper will adopt an incompressible SPH (ISPH) approach to simulate the wave propagation and impact, in which the fluid pressure is solved using a pressure Poisson equation and thus more stable and accurate pressure fields can be obtained. The focus of the study is on comparing three different pressure gradient calculation models in SPH and proposing the most efficient first-order consistent kernel interpolation (C1_KI) numerical scheme for modelling violent wave impact. The improvement of the model is validated by the benchmark dam break flows and laboratory wave propagation and impact experiments

    DEVELOPMENT OF CMPS METHOD FOR ACCURATE WATER-SURFACE TRACKING IN BREAKING WAVES

    Get PDF
    A Corrected Moving Particle Semi-implicit (CMPS) method is proposed for the accurate tracking of water surface in breaking waves. The original formulations of standard MPS method are revisited from the view point of momentum conservation. Modifications and corrections are made to ensure the momentum conservation in a particle-based calculation of viscous incompressible free-surface flows. A simple numerical test demonstrates the excellent performance of the CMPS method in exact conservation of linear momentum and significantly enhanced preservation of angular momentum. The CMPS method is applied to the simulation of plunging breaking and post-breaking of solitary waves. Qualitative and quantitative comparisons with the experimental data confirm the high capability and precision of the CMPS method. A tensor-type strain-based viscosity is also proposed to further enhanced CMPS reproduction of a splash-up

    Enhanced predictions of wave impact pressure by improved incompressible SPH methods

    Get PDF
    A new criterion is proposed for a more efficient assessment of free-surface particles in a particle-based simulation. Enhanced wave impact simulations are carried out by improved Incompressible SPH (ISPH) methods. The first improvement is the same as that in the Corrected ISPH (CISPH; [Khayyer A, Gotoh, H, Shao SD. Corrected incompressible SPH method for accurate water-surface tracking in breaking waves, Coast Eng 2008; 55 (3): 236–250]) method and is proposed for the improvement of momentum conservation. The second improvement is achieved by deriving and employing a higher order source term based on a more accurate differentiation to obtain a less fluctuating and more accurate pressure field. The enhanced performance of improved ISPH methods is demonstrated through the simulation of several fluid impact simulations in comparison with the experimental data and simulation results by other numerical methods

    A short note on Dynamic Stabilization of Moving Particle Semi-implicit method

    Get PDF
    This technical note presents a simple and effective scheme for Dynamic Stabilization of MPS method. The new scheme, abbreviated as DS, reproduces meticulously adequate repulsive forces to attenuate the interparticle penetration and thus stabilizes the calculations, even for highly deformed flows characterized by tensile stress states. By performing a set of simple two-phase flow simulations, we also show the inappropriateness of the simplified/anti-symmetric MPS pressure gradient models as they may result in predominant excessive repulsive forces and thus being unable to simulate the main flow features. The DS scheme is shown to provide physically sound and computationally stable simulations of such flows

    DEVELOPMENT OF CMPS METHOD FOR ACCURATE WATER-SURFACE TRACKING IN BREAKING WAVES

    Get PDF
    A Corrected Moving Particle Semi-implicit (CMPS) method is proposed for the accurate tracking of water surface in breaking waves. The original formulations of standard MPS method are revisited from the view point of momentum conservation. Modifications and corrections are made to ensure the momentum conservation in a particle-based calculation of viscous incompressible free-surface flows. A simple numerical test demonstrates the excellent performance of the CMPS method in exact conservation of linear momentum and significantly enhanced preservation of angular momentum. The CMPS method is applied to the simulation of plunging breaking and post-breaking of solitary waves. Qualitative and quantitative comparisons with the experimental data confirm the high capability and precision of the CMPS method. A tensor-type strain-based viscosity is also proposed to further enhanced CMPS reproduction of a splash-up

    On the state-of-the-art of particle methods for coastal and ocean engineering

    Get PDF
    The article aims at providing an up-to-date review on several latest advancements related to particle methods with applications in coastal and ocean engineering. The latest advancements corresponding to accuracy, stability, conservation properties, multiphase multi-physics multi-scale simulations, fluid-structure interactions, exclusive coastal/ocean engineering applications and computational efficiency are reviewed. The future perspectives for further enhancement of applicability and reliability of particle methods for coastal/ocean engineering applications are also highlighted
    corecore