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ABSTRACT  

 

As a gridless particle method, the MPS (Moving Particle Semi-implicit) method has 

been proven useful in a wide variety of engineering applications including free-surface 

hydrodynamic flows. Despite its simplicity and wide range of applicability, the MPS method 

suffers from some drawbacks such as non-conservation of momentum and spurious pressure 

fluctuation. By introducing new formulations for pressure gradient and source term of Poisson 

Pressure Equation (PPE), we have proposed improved MPS methods for refined simulation of 

free-surface hydrodynamic flows. The enhanced performance of the proposed methods is 

shown through the simulation of numerous free-surface hydrodynamic flows in comparison 

with the experimental data. 
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1. INTRODUCTION 

 

Free-surface hydrodynamic flows are of significant industrial and environmental 

importance, yet, are difficult to simulate due to the presence of an arbitrary moving interface. 

A recent interest has been focused on the development of Lagrangian gridless methods, 

namely the particle methods. Due to their inherent gridless feature, particle methods are well 

suited for treatment of problems characterized by moving discontinuities and large 

deformations. In addition, because of their Lagrangian nature, such methods can analyze 

problems without the numerical diffusion arising from fixed-point interpolations of advective 

terms as in case of Eulerian grid-based methods. Accordingly, particle methods provide a 

substantial potential for simulation of free-surface hydrodynamic flows, especially those 

accompanied by large deformations and fragmentations. Particle methods can be classified 

into those based on field approximations, as the Element-Free Galerkin method (EFG), and 

those based on kernel approximations, as the Smoothed Particle Hydrodynamics (SPH) or 

Moving Particle Semi-implicit (MPS) methods. 

Originally developed by Koshizuka and Oka (1996), the MPS method has been proven 

useful in a wide variety of engineering applications including free-surface hydrodynamic 

flows (e.g. Gotoh and Sakai, 1999; Gotoh et al., 2005). Despite its wide range of applicability, 

the MPS method suffers from some inherent difficulties such as non-conservation of 

momentum (Khayyer and Gotoh, 2008) and spurious pressure fluctuation (Gotoh et al., 2005). 

By focusing on the momentum conservation properties of original MPS formulations, 

we have proposed a new pressure gradient term which conserves both linear and angular 

momentum. The MPS method modified by the new pressure gradient term has been given the 

name CMPS (Corrected MPS). The enhanced performance of CMPS method is shown 

through the simulation of a plunging breaker and resultant splash-up. Further refined 



reproduction of the splash-up is obtained by applying a tensor-type strain-based viscosity by 

CMPS-SBV (CMPS with a Strain-Based Viscosity) method. 

To resolve the problem of spurious pressure fluctuation, derivation of the Poisson 

Pressure Equation (PPE) in MPS method is revisited. It is shown that the original PPE in MPS 

method has been derived on the basis of an assumption which is not fully valid as a result of 

the existence of numerical errors due to particle-based discretization. Accordingly, calculation 

of pressure in original (standard) MPS method comes with considerable pressure fluctuations 

which do not allow the method to be applied as a reliable numerical tool for the prediction of, 

for instance, wave impact pressure on a coastal structure. To obtain a less-fluctuating and 

more-accurate pressure field, a higher order source term of PPE is derived. The CMPS 

method modified by the new source term has been given the name CMPS-HS (CMPS with a 

Higher-order Source term). The improved performance of CMPS-HS method, as well as its 

applicability for calculation of wave impact pressure, are shown through the simulation of a 

dam break with impact (Hu and Kashiwagi, 2004) and a flip-through impact (Hattori et al., 

1994). 

 

 

2. MPS METHOD; BRIEF DESCRIPTION 

 

Here the MPS method is briefly explained. Detailed descriptions were provided by 

Koshizuka and Oka (1996) or Gotoh et al. (2005). The governing equations are the continuity 

and Navier-Stokes equations describing the motion of a viscous incompressible flow: 
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where u = particle velocity vector; t = time; ρ = fluid density; p = particle pressure; g = 

gravitational acceleration vector and ν  = laminar kinematic viscosity. 

The gradient operator is defined as a local weighted average of the gradient vectors 

between particle i and its neighboring particles j: 
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where φ = arbitrary scalar function, Ds = number of space dimensions, r = coordinate vector 

of fluid particle, w(r) = the kernel function and n0 = the constant particle number density. 

Following Koshizuka et al. (1998), the pressure gradient is defined by replacing φi in Eq. 3 by 

the minimum value of φ among the neighboring particles, such as: 
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This replacement improves the stability of the code by ensuring the interparticle repulsive 

force (Koshizuka et al., 1998). The Laplacian operator is defined as (Koshizuka et al., 1998): 
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where λ is introduced as: 
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The particle number density at particle i and the most commonly applied kernel function in 

MPS-based calculations are given by Eqs. 8 and 9: 
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In addition, the pressure is obtained implicitly by solving a Poisson Pressure Equation (PPE): 
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where ∆t = calculation time step; and k denotes the step of calculation. 

 

 

3. MPS METHOD; IMPROVEMENT OF MOMENTUM CONSERVATION 

 

 All numerical methods for simulation of hydrodynamic flows are based on the 

fundamental principles of physics including mass and momentum conservation. Particle 

methods are not an exception; nevertheless, due to the particle-based discretization, local (and 

thus global) conservation of momentum may not be ensured in a particle-based calculation 

unless special attention is focused on the interparticle forces. In a recent study, Khayyer and 

Gotoh (2008) showed that in standard MPS method, the pressure gradient term does not 

conserve neither linear nor angular momentum because the interparticle pressure forces are 

not anti-symmetric (equal in magnitude, opposite in direction). In other words, by considering 

the original pressure gradient term in MPS method (Eq. 4), the force due to pressure on 

particle i owing to j would be: 
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while the pressure force on particle j owing to i is: 
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Even if pi had not been replaced with the minimum pressure at neighboring particles as in Eq. 

4, the pressure interacting forces would have been equal (if mi=mj) in magnitude but not 

opposite in direction and therefore, not anti-symmetric. For this reason, conservation of both 

linear and angular momentum is not guaranteed in standard MPS method. However, by 

deriving an anti-symmetric pressure gradient term, the conservation of both linear and angular 

momentum would be ensured in a MPS-based calculation. The new anti-symmetric pressure 

gradient term is derived as (Khayyer and Gotoh, 2008): 
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The above pressure gradient term preserves both linear and angular momentum, seeing that 

the pressure interacting forces are both anti-symmetric and radial. The MPS method modified 

by Eq. 14 is given the name Corrected MPS (CMPS; Khayyer and Gotoh, 2008). 

 

 

3.1 Refined simulation of a plunging breaker and resultant splash-up 

 

In this section the improved performance of CMPS method is shown by simulating the 

breaking and post-breaking of a plunging breaker on a constant slope. Breaking and post-

breaking of a solitary wave with the incident relative wave height or the ratio of offshore 

wave height (=H0) to offshore water depth (=h0) of H0 /h0 = 0.40 is simulated over a slope (=s) 

of 1:15. The prescribed conditions would lead to a strong plunging breaker in which the 

plunging jet hits the still water ahead of the wave. Hence, as a result of the momentum 

exchange between the plunging jet and the wedge-shaped still water, a secondary shoreward 

directed jet is generated from the impact point. The splash of water in form of a secondary jet, 

often known as splash-up, is a complex yet important process as it plays an essential role in 

dissipation of wave energy and momentum transfer. 

Since the splash-up is a highly deformed flow characterized by anisotropic strain rates, 

it would be preferable to obtain the viscous forces from a tensor-type strain-based viscosity 

term rather than a simplified Laplacian model (Eq. 6). For this reason, we have proposed a 

tensor-type strain-based viscosity when CMPS method is supposed to calculate a highly 

anisotropically deformed flow such as the splash-up. The proposed strain-based viscosity term 

is formulated as (Khayyer and Gotoh, 2008): 
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where T = the viscous stress tensor which can be related to the strain rate of flow by the 

following equation: 
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Fig. 1. Refined reproduction of a plunging breaking wave and resultant splash-up - qualitative 

comparison of laboratory photographs (Li and Raichlen, 2003) with  

CMPS-SBV, CMPS and standard MPS snapshots 
 

In Eq. 16, µ = dynamic viscosity ; u and v = the components of the particle velocity in x and y 

directions, respectively. The velocity and kernel gradients are introduced for each particle as: 
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The CMPS method with a Strain-Based Viscosity has been given the name CMPS-SBV. 

Fig. 1 illustrates the MPS, CMPS and CMPS-SBV snapshots in comparison with their 

corresponding experimental photographs (Li and Raichlen, 2003). From the figure, the 

simulation-experiment agreement is better in case of CMPS snapshots compared to those by 

MPS method. The results by CMPS method portray a clearer image of both plunging jet and 

the air chamber beneath it with less unphysical particle scattering as seen in MPS snapshots. 

In addition, from Fig. 1(f) the splash-up is more precisely simulated by CMPS method rather 

than by standard MPS method, as the reflected jet angle and the air chamber beneath the 

plunging jet are in better agreement with the experiment. However, the CMPS method has not 

been able yet to reproduce the entire curl of the splash-up (Fig. 1(g)). Further refined 

reproduction of splash-up is achieved when the viscous interacting forces are obtained by a 

tensor-type strain-based viscosity in CMPS-SBV method. From Fig. 1(f-g), the CMPS-SBV 

method has resulted in an accurate reproduction of splash-up formation and its development 

with less unphysical particle scattering as seen in CMPS and especially MPS snapshots. 

 

 

4. MPS METHOD; IMPROVED SOLUTION FOR PRESSURE FIELD 

 

One of the main drawbacks associated with particle methods including the MPS 

method is the existence of fluctuations in the pressure field. This problem has already been 

(a) Standard MPS 
(f) Standard MPS (g) Standard MPS 

(e) CMPS (f) CMPS (g) CMPS 

(f) CMPS-SBV (e) CMPS-SBV (g) CMPS-SBV 
(a) CMPS-SBV 

(a) CMPS 

(e) Standard MPS 



addressed by some researchers including Gotoh et al. (2005) and Colagrossi and Landrini 

(2003). An improved pressure calculation by a modified Weakly Compressible SPH 

(WCSPH) method was presented by Colagrossi and Landrini (2003). In their study, density at 

fluid particles was re-initialized at distinctive time steps through applying a first-order 

accurate interpolation scheme via the application of a moving-least-square kernel 

approximation. A more accurate interpolation scheme improves the consistency of mass-area-

density and accordingly results in a less-fluctuating and more-accurate source term for 

pressure equation (equation of state). Hence, a less-fluctuating and more-accurate pressure 

field would be obtained. In contrast to WCSPH methods, the MPS and Incompressible SPH 

(ISPH; Shao and Lo, 2003) methods employ a Poisson Pressure Equation (PPE) in which the 

pressure is a direct function of the time rate of change of particle number density (or density 

in ISPH method) rather than the density itself. Accordingly, to obtain a less-fluctuating and 

more-accurate pressure field by MPS method, we propose a more accurate source term of 

PPE based on a higher order calculation of time rate of change of particle number density. 

In standard MPS method an intermediate velocity field u
*
 is considered as a 

divergence free velocity field plus the gradient of a scalar field: 
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The intermediate velocity field is obtained explicitly in the first prediction step, considering 

the viscosity and gravity terms: 
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In the second correction step a correction for velocity is calculated as: 
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The velocities and the number densities in the second process satisfy the mass conservation 

law as follows: 
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In standard MPS method, the assumption is that at each time step the incompressibility is 

perfectly satisfied, that is to say, the particle number densities are exactly adjusted to n0. Thus, 

Eq. 22 is written as: 
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From Eqs. 21 and 23, the PPE (Eq. 10) is obtained and solved in the standard MPS 

method. However, in reality because of the errors generated from the discretization of 

governing equations and the solution process of the system of linear equations, the particle 

number density at each time step would not be exactly equal to n0. As a result, calculation of 

time variation of n (Dn/Dt) is accompanied by numerical errors that are being accumulated as 

the calculation proceeds. The existence of such accumulative errors would lead to 

considerable pressure fluctuations and hence, an inaccurate pressure field. Here, we propose 

another formulation for the calculation of Dn/Dt. From Eq. 8: 



0.0 0.4

0.0

0.2
0.0 356.0 712.0 1068.0 1424.0 1780.0

MPS

0.2

0.0 0.4

0.0

CMPS

0.0 0.4

0.0

0.2

CMPS-HS

0.4 0.8

0.0

0.1

0.0 356.0 712.0 1068.0 1424.0 1780.0

MPS

x(m)

y(m)

0.4 0.8

0.0

0.1

CMPS

x(m)

y(m)

0.4 0.8

0.0

0.1

CMPS-HS

x(m)

y(m)

(a) (b)

A

CMPS

y(m)

MPS

y(m) y(m)

(c)

1.0 1.1

0.0

0.1

1.0 1.1

0.0

0.1

0.0 356.0 712.0 1068.0 1424.0 1780.0

1.0 1.1

0.0

0.1

CMPS-HS

  
Fig. 2. A dam break with impact - snapshots of water particles together with pressure field 

 

( )
∑

≠

−
=

ji

ij

t

w

t

n

D

D

D

D rr
      (24) 

 
By considering the standard kernel in MPS method (Eq. 9): 
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Therefore, the modified PPE would be: 
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The CMPS method modified by Eq. 26 is referred as CMPS-HS (CMPS method with a 

Higher-order Source term). In next two sections, the enhanced performance of CMPS-HS 

method is shown by simulating a dam break with impact (Hu and Kashiwagi, 2004) and a 

flip-through impact (Hattori et al., 1994). 

 

4.1 A dam break with impact 

 

In this section, a dam break with impact is simulated by the standard MPS, CMPS and 

CMPS-HS methods. The physical conditions and the particle size (= 0.004 m) are set equal to 

those in the study by Hu and Kashiwagi (2004). Fig. 2(a-c) illustrates the snapshots of water 

particles together with the pressure field just at the beginning of the dam release (t = 0.002 s); 

at the time of maximum impact pressure recorded at a point 0.01 m above the bottom (point 



 
Fig. 3. A dam break with impact - time variation of pressure at measuring point A 

 

A); and at t = 0.750 s which is the experimental time of second peak pressure at point A. 

From Fig. 2(a) it is clear that the standard MPS method has resulted in a false and irregular 

pressure field even at the beginning of the calculation. The CMPS method has provided a 

much better pressure distribution. Yet, the curvatures in pressure profile resulting from the 

difference in accelerations of just-released particles have not been well simulated. Such 

curved pressure profiles are finely reproduced by CMPS-HS method. 

From Fig. 2(b), the pressure distribution by CMPS method appears to be more regular 

than that by standard MPS method. However, existence of pressure noise is evident in CMPS 

snapshot. The employment of a higher order source term in CMPS-HS method has removed 

such pressure noises resulting in a more smoothly-distributed pressure field. After the impact 

the water is deviated upward and then starts to reverse in form of a plunging jet. Eventually, it 

impacts the underlying water. Fig. 2(c) shows the snapshots of water particles illustrating 

such violent impact at t = 0.750 s. A spurious pressure distribution together with some 

unphysical scattering of fluid particles is clear in standard MPS snapshot. The pressure 

distribution is improved by CMPS method. In addition, the form of the jet appears to be more 

integrated with less particle scattering. The CMPS-HS method has given a further improved 

pressure field together with a more integrated plunging jet. 

Fig. 3 shows the time variation of pressure at measuring point A. According to the 

experiment (Hu and Kashiwagi, 2004), the impact pressure (first pressure peak) occurs at ti-exp 

= 0.348 s (= experimental impact instant) while the second pressure peak is induced at tsp-exp = 

0.750 s when the plunging jet hits the underlying water and initiates a jet splash-up. 

Compared to standard MPS and CMPS methods, the CMPS-HS method has resulted in a less-

fluctuating and more-accurate pressure calculation. The CMPS-HS has fairly well predicted 

the values of both first and second pressure peaks, although some amount of overestimation is 

clear. In addition, the CMPS-HS method has well predicted the impact instant (ti-CMPS-HS = 

0.342 s), the second pressure peak instant (tsp-CMPS-HS = 0.754 s) and the duration of the first 

pressure peak. On the other hand, both CMPS and standard MPS methods have 

underestimated the instants of first pressure peak by 0.010 and 0.020 seconds, respectively. 

Furthermore, the existence of large-amplitude pressure fluctuations has not allowed both 

standard MPS and CMPS methods to represent a distinctive second pressure peak. 

 

4.2 A flip-through impact 

 

A flip-through impact without air entrapment is simulated here. The physical and 

incident wave conditions are set equivalent to those in the experimental study by Hattori et al. 
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Fig. 4. A flip-through impact - snapshots of water particles together with pressure field at 

t* = 200 (time of maximum peak pressure recorded at P3) and t* =500 

 

 
Fig. 5. A flip-through impact - time history of pressure at P3 

 

(1994). Fig. 4 depicts the snapshots of water particles together with pressure field at t* = 200 

and 500. The time of the snapshots are normalized following Hattori et al. (1994): t* = t Cs/HF; 

Cs = speed of sound = 1500 m/s; HF = maximum wave height = 0.069 m. In addition, t* = 200 

refers to the time of maximum peak pressure recorded at point P3 at the vertical wall at the 

same elevation of still water level (= 0.125 m). Not surprisingly, the standard MPS method 

has given a spurious pressure distribution. Both pressure field and free-surface simulation-

experiment agreement are improved by CMPS method. A further improved pressure field is 

obtained by CMPS-HS method. At t* = 200 the snapshot by CMPS-HS method is 

characterized by distinctive pressure contours very similar to those calculated by Cooker and 

Peregrine (1992). From this CMPS-HS snapshot, two other important points can be deduced. 

Firstly, in agreement with the computation by Cooker and Peregrine (1992), the maximum 

impact pressure in a flip-through occurs in the vicinity of the still water level. Secondly, the 

maximum impact pressure at P3 has occurred at an instant very close to that in the experiment 

since a very good simulation-experiment agreement can be seen in the wave profile. The 

water surface profile in CMPS-HS snapshot at t* = 500 also closely matches with that from 

the experiment. 

Fig. 5 depicts the time history of pressure at point P3. The vertical and horizontal axes 



represent the normalized pressure (= p* = ρ g/HF) and normalized time (= t* = t Cs/HF), 

respectively. The figure reconfirms the spurious pressure calculation by standard MPS 

method. The artificial pressure fluctuations seen in standard MPS results are somewhat 

smoothed in the results by CMPS method. Yet, neither CMPS method nor standard MPS 

method could provide an acceptable pressure trace. On the other hand, a fairly well agreement 

can be seen in the results by CMPS-HS method and experimental data. 

 

 

5. CONCLUSIVE REMARS 

 

Improved MPS methods are proposed for refined simulation of free-surface 

hydrodynamic flows. By focusing on momentum conservation properties of MPS 

formulations and pressure solution process, we have proposed two improved MPS methods, 

namely, Corrected MPS (CMPS; Khayyer and Gotoh, 2008) and CMPS with a Higher-order 

Source term (CMPS-HS). Enhanced performance of the proposed methods in refined 

reproduction of both free-surface profile and pressure field is shown through the simulation of 

numerous hydrodynamic flows with comparison to experiment. 
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