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A Corrected Moving Particle Semi-implicit (CMPS) method is proposed for accurate 

tracking of water surface in breaking waves. The original formulations of standard 

MPS method are revisited from the view point of momentum conservation. 

Modifications and corrections are made to ensure the momentum conservation in a 

particle-based calculation of viscous incompressible free-surface flows. A simple 

numerical test demonstrates the excellent performance of the CMPS method in exact 

conservation of linear momentum and significantly enhanced preservation of angular 

momentum. The CMPS method is applied to the simulation of plunging breaking and 

post-breaking of solitary waves. Qualitative and quantitative comparisons with the 

experimental data confirm the high capability and precision of the CMPS method. A 

tensor-type strain-based viscosity is also proposed for further enhanced CMPS 

reproduction of a splash-up. 

 

Keywords: MPS method; CMPS method; momentum conservation; breaking waves; 

splash-up; strain-based viscosity. 
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1. Introduction 

Free surface flows are of crucial importance in the field of hydraulic engineering but are difficult to 

simulate since the surface boundary conditions are specified on an arbitrary moving surface. 

Numerous grid-based water-surface-tracking techniques, such as the MAC [Harlow and Welch, 

1965] or VOF [Hirt and Nichols, 1981] methods were proposed to tackle the difficulty in free 

surface modeling. Nevertheless, both MAC and VOF methods suffer from the problem of numerical 

diffusion arising from the grid-based discretization of advection terms in the Navier-Stokes equation. 

The numerical diffusion becomes significant when the free surface experiences abrupt and large 

deformations accompanied by fluid fragmentation (such as the case of a plunging breaking wave 

and resultant splash-up). A few algorithms such as the CIP method [Yabe et al., 1991; Yabe et al., 

2001] has been proposed to attenuate the numerical diffusion; yet, the implementation of such 

sophisticated algorithms would further complicate the computational procedure for free surface 

modeling. 

A recent interest has been focused on the development of the next generation computational 

methods, the gridless or meshfree methods that are expected to be superior to the conventional 

grid-based methods. Meshfree methods provide substantial potential in many classes of problems, 

such as those which include moving discontinuities and those characterized by large deformations. 

The main idea behind the meshfree methods is to obtain accurate and stable numerical solutions for 

integral equations of partial differential equations with all kinds of possible boundary conditions 

with a set of arbitrarily distributed calculation points such as nodes or particles. The calculation 

points can be either fixed (Eulerian approach) or moveable with the fluid (Lagrangian approach). 

The Lagrangian meshfree method is called the particle method. Particle methods can be classified 

into those based on field approximations, as the Element-Free Galerkin method (EFG), and those 

based on kernel approximations, as the Smoothed Particle Hydrodynamics (SPH) or Moving 

Particle Semi-implicit (MPS) method. 
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Originally developed by Koshizuka et al. [1995], the MPS method has been applied in a wide 

variety of problems such as elastic structures [Koshizuka et al., 2001a], nuclear reactor safety 

[Koshizuka et al. 2001b] or blood flow simulation [Tsubota et al., 2006]. The MPS method has 

been improved and extended into coastal engineering to study wave breaking [Gotoh and Sakai, 

1999; Gotoh et al., 2005] and two-phase sediment-water interactions [Gotoh et al., 2001a]. Despite 

being a superior method for the calculation of hydraulic phenomena, there are some shortcomings 

associated with the MPS method. Being similar to some other particle methods, such as the SPH 

method, the MPS method suffers from some inherent difficulties such as non-conservation of 

mechanical properties (namely, mechanical energy or momentum) or lack of completeness of kernel 

interpolants. In case of the SPH method, a huge amount of research has been carried out leading to 

Corrective SPH (CSPH) methods such as those which ensure the preservation of linear and angular 

momentum [e.g. Bonet and Lok, 1999] or those which guarantee the high-order completeness of 

interpolants [e.g. Liu et al., 1995]. In case of the MPS method, however, there have been much less 

studies regarding to the mentioned difficulties. By treating the continuum as a Hamiltonian system 

of particles and through a direct discretization of the Lagrangian for inviscid incompressible flows, 

Suzuki et al. [2007] have developed the HMPS (Hamiltonian MPS) in which the momentum and 

mechanical energy of the system are preserved. Although HMPS is superior to the original or 

standard MPS in terms of the preservation of conservation laws, the numerical framework of HMPS 

is much more complicated than that of the standard MPS. Hence, it would be more difficult to code 

and implement a HMPS calculation than a standard MPS one. 

This paper is focused on the momentum conservation properties of the standard MPS 

formulations. The aim is to improve the performance of the standard MPS method by modifying 

and correcting the formulations while maintaining their robustness and simplicity. The target 

phenomenon is a strong plunging breaking and resultant splash-up, where momentum conservation 

properties of formulations become more important. In addition, as the splash-up is a highly 
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deformed flow characterized by non-uniform strain rates, it would be preferable to obtain the 

viscous forces by applying a tensor-type strain-based viscosity. In this paper, we propose a 

tensor-type strain-based viscosity when the Corrected MPS (CMPS) method is supposed to simulate 

a highly non-uniformly deformed flow such as the splash-up. 

The paper is organized in the following way. Firstly, a brief explanation of the MPS method 

including the governing equations and the equation solvers is presented. Next, the momentum 

conservation properties of standard MPS formulations are discussed. Following by that, the new 

Corrected MPS (CMPS) formulations are derived with the aim of ensuring the conservation of 

linear and angular momentum in a MPS-based calculation of viscous incompressible flow. After a 

simple verification, the proposed CMPS method is applied to the simulation of solitary wave 

breaking and post-breaking on a plane slope. The enhanced performance of the proposed CMPS 

method is proved through both qualitative and quantitative comparisons with the experimental data. 

 

2. MPS Method 

In this section the MPS method is briefly explained. Detailed descriptions were provided by 

Koshizuka and Oka [1996] or Gotoh et al. [2005]. The MPS method is a macroscopic, deterministic 

particle method proposed by Koshizuka et al. [1995]. The fluid is modeled as an assembly of 

interacting particles, the motion of which is calculated through the interactions with neighboring 

particles and according to the governing equation of fluid motion. The governing equations are the 

continuity equation and Navier-Stokes equation describing the motion of a viscous incompressible 

flow: 

0=⋅∇ u          (1) 

ugu 21
D
D

∇++∇−= ν
ρ

p
t

      (2) 

where u = particle velocity vector; t = time; ρ = fluid density; p = particle pressure; g = gravitational 
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acceleration vector and ν  = laminar kinematic viscosity. The left hand side of Eq. 2 denotes the 

Lagrangian derivative involving the advection term. In the particle methods, including the MPS 

method, the advection term is automatically calculated through the tracking of particle motion; 

hence, the numerical diffusion arising from the successive interpolation of the advection function in 

Eulerian grid-based methods is controlled without using a sophisticated algorithm. The above 

equations are discretized by use of particle interaction models, namely the gradient and Laplacian 

operators. 

The gradient operator is a local weighted average of the gradient vectors between particle i and 

its neighboring particles j: 
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where φ = arbitrary scalar function, Ds = number of space dimensions, r = coordinate vector of fluid 

particle, w(r) = the kernel function and n0 = the constant particle number density. Following 

Koshizuka et al. [1998], the pressure gradient is defined by replacing φi in Eq. 3 by the minimum 

value of φ among the neighboring particles, such as:  
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This replacement improves the stability of the code by ensuring the interparticle repulsive force 

[Koshizuka et al., 1998]. The most common kernel function applied in MPS research is the one 

proposed by Koshizuka and Oka [1996]: 
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The particle number density at the i-th particle position is defined in the following form by using the 
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kernel function: 

( )∑
≠
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The Laplacian operator is derived based on the concept of diffusion and has the following form 

[Koshizuka et al., 1998]: 
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In the above equation the parameter λ is introduced to make the increase of variance due to the 

re-distribution of the above equation equal to the increase of variance estimated from the unsteady 

diffusion equation. λ is introduced as: 
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The iterative prediction-correction process in the MPS method is composed of two main steps. 

The first prediction step is an explicit integration in time without enforcing incompressibility, while, 

the second correction step is an implicit computation of a divergence free velocity field. In the first 

process, intermediate temporal particle velocities and positions are obtained without considering the 

pressure term. In this process the mass conservation or the incompressibility of fluid is not satisfied, 

in other words, the number densities n* that are calculated at the end of first process deviate from 

the constant n0; hence, a second corrective process is required to adjust the number densities to 

initial constant values prior to the time step. In the second process, the intermediate particle 

velocities are updated through solving the Poisson equation of pressure which contains the 

deviation of particle number densities. The Poisson equation of pressure is derived as [Koshizuka et 

al., 1995]: 
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where ∆t = calculation time step; and k denotes the step of calculation. In the MPS method, if the 

particle number density satisfies the following condition: 

0nni β<                 (11) 

the particle is considered as a free-surface particle (constant β = 0.97) for which the zero pressure 

boundary condition is applied [Koshizuka and Oka, 1996]. 

 

3. Momentum Conservation Properties of MPS Formulations 

3.1. Conservation of linear momentum 

The total linear momentum of a system of particles is given by: 

∑
=

=
N

i
iim

1
uG                    (12) 

where N = total number of fluid particles; mi and ui represent the mass and velocity vector of 

particle i, respectively. The motion of each particle is governed by the Newton’s second law: 

iiii m aAF =−           (13) 

where Fi and Ai denote the external and internal vector forces acting on particle i and ai is the 

instantaneous particle acceleration. In the absence of external forces, the rate of time change of total 

linear momentum (=G& ) is: 
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Thus the condition for preservation of linear momentum can simply be written as: 
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In general the internal force on particle i can be expressed as the sum of interaction forces between 

pairs of particles:  
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∑
=

=
iN

j
iji

1

AA        (16) 

where Ni = the total number of neighboring particles of particle i; Aij = internal interacting vector 

forces between particle i and its neighboring particle j. In Fig. 1, a pair of particles, particle i and its 

neighboring particle j are shown schematically with the internal interaction forces between them. 

The internal interaction forces can be decomposed into pressure and viscous interaction forces as 

depicted in Fig. 2. It can be shown that the linear momentum is exactly conserved for the viscous 

forces (Fig. 2(b)) because the same magnitude of viscous forces works in the opposite direction; 

however, the pressure interacting forces do not preserve linear momentum (Fig. 2(a)). Considering 

Newton’s second law and from Eqs. 2 and 4, the force due to pressure on particle i owing to j is: 
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while the pressure force on particle j owing to i would be: 
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Since )()ˆ()()ˆ( jijiijij pppp rrrr −−−≠−− , in general: 

p
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The problem is not caused by the adoption of Eq. 4 proposed by Koshizuka et al. [1998]. Even if pi 

had not been replaced with the minimum pressure at neighboring particles as in Eq. 4, the pressure 

interacting forces would have been equal (if mi=mj) in magnitude but not opposite in direction. 

Thus, exact conservation of linear momentum will not be guaranteed if the above pressure gradient 

term is applied. However, linear momentum would be exactly conserved if we derive an 

anti-symmetric equation for pressure gradient term. By anti-symmetric we mean that pressure 

gradient calculated between particles i and j (target particle i and its neighboring particle j) is equal 

and opposite to that calculated between particles j and i (target particle j and its neighboring particle 
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i). In section 4.1, a new anti-symmetric formulation for pressure interacting forces is derived to 

ensure the exact conservation of linear momentum. 

On the contrary to the pressure interacting forces, the preservation of linear momentum is 

exactly guaranteed for the viscous forces. The viscous force on particle i owing to j is: 

( ) ( )ijij
si

iji
v

ij rrw
n

Dmm −−=∇= →→ )(2

0

2 uuuA
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νν        (20) 

which is exactly equal and opposite to the force on particle j owing to i. Therefore, the total sum of 

all interaction pairs between particles due to viscous accelerations will vanish. Consequently, in 

case of viscous forces total linear momentum of the system will be preserved. 

 

3.2. Conservation of angular momentum 

The total angular momentum of a system of particles with respect to the origin is given as: 

∑
=

×=
N

i
iii m
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By time differentiating and considering the law of motion in the absence of external forces, the rate 

of time change of angular momentum of the system (= H& ) will be: 
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Hence, conservation of angular momentum will be guaranteed if the total moment of the internal 

forces about the origin vanishes, that is: 

0
1

=×∑
=

N

i
ii Ar          (23) 

Considering again the two neighboring particles shown in Fig. 1, the angular moment of the two 

interacting forces about the origin can be written as: 

jijiji ArAr ×+×           (24) 

If Aij=-Aji, then: 



 11

ijijjijiji ArArAr ×−=×+×        (25) 

The above term will vanish whenever the interaction force Aij is co-linear with the vector rij (= rj − ri). 

The interacting pressure forces between particles i and j are co-linear with the vector rij as the 

pressure term (Eq. 4) is a product of a scalar and the vector rij. However, since the interacting 

pressure forces are not anti-symmetric (equal in magnitude, opposite in direction), similar to the 

linear momentum the conservation of angular momentum is not guaranteed. In case of the viscous 

forces, the interactions do not necessarily lie on the same line with vector rij; thus, the conservation 

of angular momentum is not guaranteed either. Briefly speaking, in standard MPS method, the 

angular momentum is not conserved while the linear momentum is conserved only in case of the 

viscous forces. This fact will be more clearly shown in chapter 5. 

 

4. Derivation of Corrected MPS (CMPS) Formulations 

4.1. CMPS: conservation of linear momentum 

As previously discussed in section 3.1, the pressure gradient term in the standard MPS method does 

not guarantee the conservation of linear momentum. For this reason, we propose another 

formulation for pressure gradient term. Eq. 4 is rewritten here, splitting the numerator of the 

fraction containing the pressure terms. 
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The concept of the gradient model in the standard MPS and CMPS methods is depicted in Fig. 3. In 

order to derive the new formulation in an anti-symmetric form, an imaginary point k is considered 

on the midpoint of the position vector of particle i and its neighboring particle j, namely, rij. The 

gradient term is now modified considering point k and the imaginary position vector rik (= rk - ri). 
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In the above equation n0-ik refers to the particle number density in the new imaginary influence circle 

of particle i which contains the neighboring particles k. In the standard MPS method, originally a 

linear variation of pressure is assumed in the short distance between particle i and its neighboring 

particle j. Hence, pk can be substituted by (pj+pi)/2 while rik is also rij/2. Thus: 
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On the other hand, it can be shown that the weight function applied in the new imaginary influence 

circle is equal to the one in the initial influence circle. 
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Therefore, the summation of weight functions in the imaginary influence circle of particle i would 

be equal to that in the initial influence circle: 
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Accordingly the new pressure gradient term can be written as: 
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Since the minimum pressure in the influence circle of particle i is not necessarily equal to that in the 

influence circle of particle j, the above equation is not yet anti-symmetric and needs a slight 

modification. In order to make it a full anti-symmetric equation, ip̂ is replaced by 2/)ˆˆ( ji pp + . 

Therefore, the new pressure gradient term in the CMPS method is derived as: 
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The linear momentum is exactly conserved when the above anti-symmetric equation is applied. 

Since the conservation of linear momentum is also guaranteed for the viscous forces (Eq. 20), in the 

CMPS method the total linear momentum of the system would be exactly conserved. 

 

4.2. CMPS: conservation of angular momentum 

The exact conservation of angular momentum is not guaranteed in the standard MPS method as the 

viscous interacting forces are not co-linear with the position vector of two neighboring particles and 

the pressure interacting forces are not opposite. In the CMPS method the new pressure gradient 

term is anti-symmetric in addition to being radial (co-linear with the position vector rij); hence, 

angular momentum will be exactly conserved in case of the pressure interacting forces. For the 

viscous interacting forces, however, conservation of angular momentum is not strictly ensured. A 

variety of approaches have been introduced in the SPH research by use of which the exact 

conservation of angular momentum can be guaranteed. Bonet and Lok [1999] proposed a discrete 

variational approach to ensure the exact preservation of linear and angular momentum. Later, Bonet 

et al. [2004] introduced the Hamiltonian SPH which also ensures the preservation of linear and 

angular momentum. Another approach is focused on the completeness of the kernel functions. 

The completeness in meshfree methods is equivalent to the consistency in the finite difference 

literature and refers to the ability of the kernel functions in the exact reproduction of a physical field 

based on the nodal (particle) values. Liu et al. [1995] proposed a correction function that restores 

linear (first-order) completeness of the kernel function. In addition to increasing the accuracy 

[Krongauz and Belytschko, 1997], linear completeness of kernel function also guarantees the global 

conservation of angular momentum as shown by Belytschko et al. [1998]. However, there are two 

problems associated with such kind of correction techniques. Firstly, as previously discussed by 

Bonet and Lok [1999], the use of a first-order (or higher) correction technique would significantly 

add to the computational time as the coefficients used in correction function are functions of rij. 
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Secondly, as the summations are calculated locally over the neighboring particles of a target particle, 

the correction function computed for particle i is not necessarily equal to that calculated for its 

neighboring particle j. In other words, the anti-symmetric form of the equations is no longer 

maintained. Vaughan et al. [2008] have also criticized such correction techniques that may violate 

the anti-symmetric form of equations leading to violation of Newton’s third law. Accordingly, linear 

kernel correction may not always be a promising way of performing more efficient and accurate 

computations unless an appropriate way for the calculation of such corrective term is chosen. Hence, 

we postpone the employment of linear kernel correction to near-future works. 

 

5. Validation of CMPS Method 

In this section, a simple test is carried out to validate the CMPS method and to show its enhanced 

performance comparing to the standard MPS method. The test is the simulation of an elliptical 

water drop [Monaghan, 1994; Bonet and Lok, 1999]. The initial fluid configuration is a circle of 

radius 1 m subjected to no external forces but an initial velocity field as (-100x,100y) m/s. During 

the calculation due to the absence of external forces total linear and angular momentum should be 

preserved. Moreover, the drop should stay elliptical, the value of ab (semi-minor axis ×  semi-major 

axis) should remain constant (as the fluid is incompressible) and the outer boundary surface should 

remain smooth. The domain is represented by a total number of 7850 particles being 2 cm in 

diameter. The density and viscosity of fluid are chosen equal to those selected in [Bonet and Lok, 

1999] that is ρ = 1000 kg/m3 and µ = 0.5 kg m-1 s-1. The equation governing the time variation of b is 

given as [Monaghan, 1994; Bonet and Lok, 1999]: 
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where z is the initial value of ab. The above second order differential equation is solved and the 

analytical solutions together with the results obtained from both standard MPS and CMPS methods 
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are plotted in Fig. 4. Both methods have accurately tracked the evolution of the drop up to t = 0.004 

s. From this instant, however, the CMPS method has resulted in a more accurate tracking of the 

drop outer surface. Fig. 5 shows the time variation of ab which should remain as 1.0 analytically (as 

the area of the ellipse which is πab should remain equal to that of the initial circle). The numerical 

error seen from the standard MPS calculation is more than that of the CMPS especially after t = 

0.004 s. The snapshots showing the particle configurations at t = 0.008 s and the initial configuration 

of particles are depicted in Fig. 6. The CMPS method has resulted in a far smoother outer boundary 

than the standard MPS. Moreover, the outer boundary near the semi-minor axis a has broken up in 

the standard MPS snapshot. 

Fig. 7 illustrates the time variation of total linear momentum in x and y directions for both 

standard MPS and CMPS methods. The figure confirms that the conservation of linear momentum 

is not guaranteed in a standard MPS calculation. On the contrary, total linear momentum of the 

system is exactly preserved in the CMPS method. The time variation of angular momentum is 

depicted in Fig. 8. Similar to linear momentum, angular momentum has not remained constant in 

the standard MPS calculations. On the other hand, the new formulation of pressure gradient term in 

the CMPS method has significantly improved the conservation of angular momentum. An 

interesting point which should be noted here is that the emergence of the noticeable numerical 

errors seen in the standard MPS results (Figs. 4 and 5) is concurrent with the large scale fluctuations 

of the total linear and angular momentum in the corresponding calculation. 

In order to present a clearer image of the momentum conservation in the CMPS method, the 

time variation of angular momentum and y-direction linear momentum are plotted again in Fig. 9 

solely for the CMPS calculation. From the figure, the amplitude of fluctuations in total y-direction 

linear momentum remains to be of order of 1O -11 all through the calculation. Such small fluctuations 

are expected to be because of the so-called round-off errors due to machine precision. On the other 

hand, the amplitude of fluctuations in total angular momentum reaches the order of 1O -4 prior to the 
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end of calculation. Conclusively, while the linear momentum is exactly conserved, exact 

conservation of angular momentum is not ensured in a CMPS calculation. Meanwhile, the 

conservation of angular momentum in the CMPS method is significantly improved as the amplitude 

of the total angular momentum fluctuatutions seen in the CMPS calculation is about 7500 times less 

than those in the standard MPS computation. 

 

6. MPS vs. CMPS Simulation of Solitary Wave Breaking and Post-Breaking on a Slope 

The breaking and post-breaking of nearshore waves are significant phenomena in the field of 

coastal engineering. Nevertheless, the complexities of fluid motion associated with wave breaking 

bring about many mathematical difficulties that eliminate the chance of a fully theoretical 

description. Both of experimental techniques and grid-based numerical simulations suffer from 

certain constraints and difficulties when they are applied in the study of such violent free-surface 

flows [see Gotoh et al., 2005 or Shao, 2006 for more details]. On the other hand, particle methods 

have a significant potential to provide a comprehensive description of the full processes associated 

with wave breaking, whilst, they can accurately track the water surface all through the wave 

breaking process. Numerous SPH-based simulations of wave breaking [e.g. Shao, 2006] and 

post-breaking [e.g. Dalrymple and Rogers, 2006] have been carried out. The MPS method has also 

been applied in the simulation of wave breaking [e.g. Koshizuka et al., 1998; Gotoh and Sakai, 

1999; and Gotoh et al., 2003] and post-breaking [e.g. Khayyer and Gotoh, 2007]. 

In this section, the CMPS and standard MPS methods are applied in the calculation of solitary 

wave breaking and post-breaking on a uniform slope. Firstly, the enhanced capability of the CMPS 

method in the simulation of plunging wave breaking and the resulting post-breaking processes such 

as the complex process of splash-up is illustrated through qualitative comparisons with laboratory 

photographs by Li and Raichlen [2003]. After the qualitative comparison, the high accuracy of the 

CMPS method is further verified by the quantitative comparisons with experimental data by Li 
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[2000]. 

 

6.1. Qualitative comparison 

6.1.1 Enhanced reproduction of a plunging breaking wave and resultant splash-up by CMPS 

method 

Shoaling, breaking and post-breaking of a solitary wave with the incident relative wave height or 

the ratio of offshore wave height (=H0) to offshore water depth (=h0) of H0 /h0=0.40 is simulated 

over a slope (=s) of 1:15. A schematic view of the computational domain is shown in Fig. 10. The 

initial offshore water depth is 0.200 m. The particles are 0.005 m in diameter and about 20000 

particles are located in the domain. Since the waves are generated by a moving wall, which initially 

moves backward and a constant number of particles are employed, by the time when the desired 

wave is generated the offshore water depth is less than that of the initial one. Hence, numerous 

preliminary simulations are carried out in order to obtain the desired relative wave height. The 

incident wave height and the offshore water depth are 0.075 m and 0.187 m, respectively. The 

conditions of H0 /h0=0.40 and s=1:15 lead to a strong plunging breaking in which the plunging jet 

hits the still water ahead of the wave, consequently a secondary shoreward directed jet is generated 

from the impact point. Fig. 11 shows three CMPS snapshots of water particles illustrating the 

initiation of breaking, splash-up initiation and splash-up formation. The particles shown by closed 

circles are those detected as free-surface particles. 

The splash-up is a very complex, yet important process as it is responsible for the generation of 

large-scale vortices and plays a major role in the dissipation of wave energy and momentum 

transfer. The complexities of fluid behaviour such as the presence of large deformations and 

fragmentations have made the simulation of such a process very difficult. The applicability of the 

standard MPS method in the simulation of splash-up is already shown by Khayyer and Gotoh 

[2007]. In this section, we show the enhanced capability of the CMPS method in the simulation of a 
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strong plunging breaking and resulting splash-up process through the qualitative comparisons with 

both the standard MPS results and the still photographs taken during the laboratory experiments by 

Li and Raichlen [2003].  

In Fig. 12 the CMPS (left hand side column) and the standard MPS (right hand side column) 

snapshots are shown together with the laboratory photographs [Li and Raichlen, 2003] located in 

the middle. By comparing the two series of snapshots with the corresponding laboratory 

photographs, it is clear that the simulation-experiment qualitative agreement is much better in case 

of CMPS snapshots. As a result of exact conservation of linear momentum and improved 

preservation of angular momentum, the CMPS results portray a clearer image of the plunging jet 

and the air chamber beneath it (Fig. 12(ac-dc)) with less particle scattering as seen in standard MPS 

results. Moreover, the splash-up is more precisely simulated by the CMPS than the standard MPS. 

The CMPS method gives a fine reproduction of the splash-up formation (Fig. 12(ec)) matching well 

with the experiment. The development of the splash-up (Fig. 12(f)) is also well simulated by the 

CMPS method as the reflected jet angel and the gap between the incident and the reflected jets (Fig. 

12(fc)) are in good agreement with the experiment. As the splash-up progresses the reflected jet 

curls back toward the incident jet and eventually becomes nearly vertical (Fig. 12(g)). This fact is 

moderately well illustrated in CMPS snapshot (Fig. 12(gc)). 

Although the splash-up is much better simulated by the CMPS method, yet, the entire curl of the 

splash has not been well reproduced (Fig. 12(fc-gc)). One of the main reasons behind this 

disagreement is expected to be the application of a simplified Laplacian model (Eq. 8) for the 

treatment of viscosity. In original MPS method, the components of the relative velocity vector 

between particle i and its neighboring particle j are treated as a scalar quantity and are diffused to 

neighboring particle j using the Laplacian model. Therefore, it would be difficult for the MPS 

method to perfectly model a highly non-uniformly deformation of a lump of water such as the 

splash-up. Later in section 6.1.2, we propose a tensor-type strain-based viscosity term which helps 
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the viscous accelerations to be calculated from a strain rate tensor. The Corrected MPS method with 

a Strain-Based Viscosity will be given the name CMPS-SBV. 

Another important issue regarding to the CMPS method is the configuration of free surface and 

non-free surface particles. Fig. 13 shows the standard MPS and the CMPS snapshots of water 

particles at the instant of breaking (the instant at which the front face of the wave becomes vertical). 

In case of the CMPS snapshot, the free surface boundary condition is correctly applied to a thin 

layer of outer particles representing a smooth free surface. On the contrary, in the standard MPS 

snapshot the particles detected as free surface do not exclusively lie on the outer layer. This is in 

direct relation with momentum conservation in the standard MPS method. Since linear momentum 

is not conserved, the interacting forces between particles are not balanced. Hence, the relative 

positions of particles might vary significantly in space leading to considerable changes in particle 

number densities and thus improper detection of free surface particles.  

Among the disadvantages associated with the standard MPS method is the problem of artificial 

pressure fluctuation already addressed by Gotoh et al. [2005]. Because the source term in Poisson 

pressure equation (Eq. 10) is a direct function of particle number density (and thus relative particle 

positions), pressure fluctuations seem to be unavoidable in a strictly incompressible particle-based 

calculation. Meanwhile, the exact conservation of linear momentum in the CMPS method 

minimizes the fluctuations in the relative positions of inner particles and consequently results in a 

more realistic instantaneous pressure distribution. Here we show the improved estimation of 

pressure by the CMPS through a simple test; that is, the time variation of hydrostatic pressure at a 

fixed point. Fig. 14(a) depicts a schematic view of the computational domain for this test. The MPS 

and CMPS time histories of pressure at measuring point A are plotted in Fig. 14(b). As previously 

discussed, the MPS estimation of pressure is accompanied by significant fluctuations with 

amplitudes being up to four times of the theoretical solution. On the other hand, the CMPS method 

has resulted in a considerably more realistic instantaneous pressure calculation. 
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6.1.2 Further enhanced reproduction of splash-up by CMPS with a Strain-Based Viscosity 

(CMPS-SBV) 

In a kernel-based particle method such as the MPS method, the divergence of a function f(x) can be 

calculated from the following equation: 
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where T = the viscous stress tensor which can be related to the strain rate of flow by the following 

equation: 
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In Eq. 36, µ = dynamic viscosity ; u and v = the components of the particle velocity in x and y 

directions, respectively. The velocity and kernel gradients are introduced for each particle as: 
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The strain-based viscosity introduced above (Eq. 35) exactly preserves linear momentum; yet, 

similar to the original MPS formulation of viscosity (Eq. 8), it does not exactly conserve angular 

momentum. Fig. 15 shows the snapshots of standard MPS, CMPS, and CMPS with Strain-Based 

Viscosity (CMPS-SBV) and the laboratory photographs [Li and Raichlen, 2003]. The employment 
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of a strain-based viscosity has resulted in an enhanced reproduction of the entire stages of splash-up 

formation (Fig. 15(e)), development (Fig. 15(f)) and its curling back (Fig. 15(g)). From Fig. 15(e), 

the geometrical shape of the plunging jet and the air chamber beneath it are in better agreement with 

the experiment. In both CMPS and standard MPS snapshots the thickness of the plunging jet at the 

time of splash-up formation seems to be more uniform than what is seen in the experiment. A 

precise reproduction of the splash-up development is illustrated by the CMPS-SBV (Fig. 15(f)) 

without the excessive dispersiveness of particles seen in CMPS and standard MPS snapshots. The 

curling back of the splash-up is finely simulated by the CMPS-SBV (Fig. 15(g)) as the reflected jet 

angel, the gap between the plunging jet and the reflected jet and the geometrical shape of the air 

chamber are in very good agreement with the experiment. 

 

6.2. Quantitative comparison 

In order to further evaluate the accuracy of the proposed CMPS method, another case of solitary 

plunging breaking is simulated and the CMPS and standard MPS simulation results are 

quantitatively compared to the corresponding experimental data by Li [2000]. Quantitative 

comparisons are made in terms of wave breaking characteristics such as variation in wave-height, 

geometrical properties of plunging jet and horizontal velocity of the tip of the plunging jet. The 

physical conditions of the simulations are equivalent to those in section 6.1 except for the incident 

wave characteristics. For both the CMPS and standard MPS simulations the incident wave height 

and the offshore water depth are 0.057 m and 0.189 m, respectively. Hence, shoaling, breaking and 

post-breaking of a solitary wave with relative wave height of H0 /h0=0.30 is simulated over a slope 

of 1:15. Some CMPS (left) and standard MPS (right) snapshots together with the horizontal velocity 

field are shown in Fig. 16. In this figure tb-MPS and ti-MPS correspond to the breaking and plunging jet 

impact instants in standard MPS calculation, while the breaking and impact instants in CMPS 

calculation are denoted by tb-CMPS and ti-CMPS, respectively. It should be noted that in Fig. 16 the time 
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interval of the plots for the CMPS and that for the standard MPS are not the same. 

Fig. 17 shows a comparison of the variation in wave height H/H0 among the CMPS and standard 

MPS results and experimental data [Li, 2000]. In the figure the ratio h0/h1 represents the ratio of the 

offshore water-depth (=h0) to the local depth (=h1). From Fig. 17 it is evident that the CMPS 

method has resulted in a more accurate prediction of the change in wave height during breaking. 

Compared to the CMPS, the standard MPS results have shown large fluctuations in predicting the 

wave height variation curve. One point that should be noted here is that fully isolated particles are 

not taken into account in the estimation of wave height as well as other quantitative indicators 

mentioned afterwards. A fully isolated particle is considered as a particle for which there is no 

neighboring particle (like the one seen in standard MPS snapshot near the wave front in Fig. 13). 

Meanwhile, for a semi-isolated particle, i.e. an isolated particle (from the rest of particles) for which 

there is at least one neighboring particle (like the one seen in Fig. 16 in tb-CMPS snapshot) the 

quantitative indicators are measured using the midpoint of a semi-isolated particle and its 

neighboring particle(s). 

The variation of the normalized horizontal velocity of the plunging jet tip is plotted in Fig. 18. 

In this figure, xt and xb indicate the x-coordinate of plunging jet tip and the breaking point, 

respectively. The experimental data are obtained from the high-speed video images by dividing the 

x coordinate of the tip in consecutive images by the time interval between frames [Li, 2000]. A 

relatively large variation can be seen in the plotted experimental data, which is expected to be 

caused by the accuracy limitation of the high-speed video [Li, 2000]. However, the experimental 

data indicate that the horizontal velocity of the plunging jet tip is nearly constant over most of the 

jet trajectory. Both CMPS and standard MPS results agree with the experiment, while, they do not 

contain large variations like those seen in the experimental data. 

Another quantitative comparison which can further highlight the accuracy of the CMPS method 

in the tracking of water surface during plunging wave breaking is the geometrical properties of the 
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plunging jet. Li [2000] utilized the following characteristics to describe the plunging jet: (i) 

trajectory of the tip of the plunging jet, and (ii) the length and thickness of the jet prior to 

impingement. The CMPS and standard MPS predictions of the trajectory of the plunging jet tip are 

depicted in Fig. 19 together with the experimental data [Li, 2000]. Compared to the standard MPS, 

the CMPS has given a much more accurate prediction of the motion and location of the plunging jet 

tip. 

The length and thickness of the plunging jet are defined by means of three geometrical 

properties equivalent to the ones specified by Li [2000]. The length of the jet L1 is defined as the 

horizontal distance from the tip of the jet to the nearest location of the wave surface which is 

vertical, as shown in Fig. 20. Two other parameters are used to describe the thickness of the jet; one 

is the thickness of the jet at the wave vertical plane (=L2), and the other one (=L3) is the thickness of 

the jet at half length of the jet or L1/2. These three parameters do not only describe the geometrical 

properties of the jet, but also portray an image of the time and spatial evolution of the wave shape 

during the development of the plunging jet. 

From Fig. 21(a), it can be seen that the variation of the plunging jet length L1 is considerably 

better anticipated by the CMPS than the standard MPS. In addition, the CMPS-predicted length of 

the jet at the impingement instant is nearly equal to the experimental data. The variations of L2 and 

L3 are depicted in Fig. 21(b-c). From Fig. 21(b), both models have overestimated the length L2, yet, 

the overestimations seen in the standard MPS results is more than those observed in the CMPS data. 

The CMPS prediction of the jet thickness L3 is in better agreement with the experimental data (Fig. 

21(c)). Fig. 21(b-c) also indicates that the lengths L2 and L3 remain nearly constant during the 

development of the plunging jet and the thickness of the jet at the middle (=L3) is about half of that 

at the base of the jet (=L2). 

Comparing Figs. 19 and 21(a) with Fig. 18, it can be seen that while the trajectory and length of 

the jet (=L1) is better predicted by the CMPS than by the standard MPS, the horizontal velocity of 
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the jet tip is nearly the same in both methods. Such a difference in prediction can be clarified from 

Figs. 16 and 17. From these two figures, the wave breaking in standard MPS has happened in a 

deeper water depth compared to CMPS. While the breaking point in standard MPS (x b-MPS = 3.74 m) 

is less than that in CMPS (x b-CMPS = 3.86 m), the jet impact point is nearly the same in both methods. 

Accordingly, the plunging jet in standard MPS has traveled a longer distance, in a greater time, with 

a horizontal velocity being about equal to that in CMPS. 

 

7. CPU Time for MPS and CMPS Calculations of Wave Breaking and Post-Breaking 

The numerical computations of the current paper are carried out by a single CPU Intel Core™ 2 

Duo 2.40 GHz with 2.00 GB system memory. In all the performed wave breaking and post-breaking 

computations in chapter 6, the calculation time step is set according to Courant stability condition 

and a time resolution chosen as 4100.5 −×  seconds, that is: 

)100.5,/min( 4
max0dt

−×=∆ udt α      (46) 

where αdt = ratio of the time step to Courant number (= 0.1); umax = instantaneous maximum velocity 

of particles; and d0 = particle diameter. The calculations are ended at simulation time of t = 8.800 

seconds. The total CPU times required for the MPS, CMPS, and CMPS-SBV calculations are 

12.638, 12.349 and 12.356 hours, respectively. The CPU time of principal routines per time step for 

the MPS, CMPS, and CMPS-SBV methods is shown in Fig. 22. In both CMPS and CMPS-SBV 

methods, the introduction of a new formulation for pressure term has slightly increased the CPU 

time for some pressure calculation processes including the pressure gradient calculation. The 

number of iterations (and accordingly the required CPU time) for pressure convergence is nearly the 

same in all the methods. However, as a result of momentum conservation, the computational time 

required for adjustment of particle positions to maintain the stability of the code is reduced in case 

of CMPS and CMPS-SBV. This reduction in computational effort leads to slightly less CPU time in 
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case of the CMPS and CMPS-SBV. The CPU time for CMPS-SBV is slightly more than that of the 

CMPS mainly due to the employment of a tensor-type viscosity. Consequently, the CMPS and 

CMPS-SBV have resulted in more accurate computation of wave breaking and post-breaking, 

while, the computational time for these methods is nearly the same as in the standard MPS. 

 

8. Conclusive Remarks 

The paper presents a Corrected Moving Particle Semi-implicit (CMPS) method for the accurate 

tracking of water-surface during wave breaking and post-breaking. The momentum conservation 

properties of standard MPS formulations are discussed. A new formulation for pressure gradient 

term is derived and proposed for the exact (and nearly exact) conservation of linear (and angular) 

momentum in a MPS-based calculation. The highly improved performance of the new method is 

shown by a simple test, that is, the evolution of an elliptical water drop. The CMPS method is 

applied to the simulation of wave breaking and post-breaking on a plane slope. The significantly 

improved accuracy of the CMPS method in the simulation of such highly non-uniformly deformed 

flow is confirmed through both qualitative and quantitative comparisons with experimental data and 

standard MPS results. A tensor-type strain-based viscosity is proposed when the CMPS method is 

applied to simulate a highly non-uniformly deformed flow such as the splash-up. Further enhanced 

reproduction of splash-up obtained from the CMPS-SBV (CMPS with Strain-Based Viscosity) 

method is presented with the results being qualitatively compared to the experiment. 

The present study highlights the importance of momentum conservation in a particle-based 

calculation of free-surface flows. However, in addition to the momentum conservation, several 

other issues should be considered in a particle-based simulation especially when highly accurate 

results are desired. Many of such key issues have already been addressed and discussed by Gotoh 

and Sakai [2006] in details. The step-by-step extension of CMPS method to a 3D multi-phase code 

with the Sub-Particle-Scale (SPS) turbulence modeling [Gotoh et al., 2001b] is among the future 
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works. 
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Fig. 1. Internal interaction forces between two neighboring particles 
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Fig. 2. Decomposition of internal interaction forces between two neighboring particles – (a) internal forces 

due to pressure (b) internal forces due to viscosity 
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Fig. 3. Concept of gradient operator in standard MPS and CMPS methods 
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Fig. 4. Computational and theoretical variation of the elliptical drop semi-minor (a) and semi-major (b) axis’s  

 

 

Fig. 5. Computational and theoretical variation of the elliptical drop axis production (ab) 
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Fig. 6. Standard MPS (middle) and CMPS (right) particle configurations for the evolution of an elliptical drop 

as it evolves from a circle (left) to a narrow ellipse 
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Fig. 7. Variation of total x-direction (left) and y-direction (right) linear momentum during the evolution of the 

elliptical drop 

 

 

Fig. 8. Variation of total angular momentum during the evolution of the elliptical drop 
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Fig. 9. CMPS variation of total angular momentum (left) and y-direction linear momentum (right) during the 

evolution of the elliptical drop 
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Fig. 10. Sketch of the computational domain for wave breaking and post-breaking simulations 
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Fig. 11. CMPS snapshots illustrating a strong plunging wave breaking and resulting splash-up (H0/h0=0.40) 
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Fig. 12. Strong plunging wave breaking and resulting splash-up (H0/h0=0.40) - qualitative comparison of 

laboratory photographs (center; Li and Raichlen [2003]) with CMPS (left) and standard MPS (right) 

snapshots 
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Fig. 13. Configuration of free surface and non-free surface particles in CMPS and standard MPS calculations 
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Fig. 14. Improved calculation of instantaneous pressure by CMPS (a) schematic description of the test (b) 

time histories of hydrostatic pressure at measuring point A 

 

 

 

 



 35

 

(e) CMPS-SBV (f) CMPS-SBV (g) CMPS-SBV

(e) CMPS (f) CMPS (g) CMPS

(e) Standard MPS (f) Standard MPS (g) Standard MPS

 

Fig. 15. Further enhanced reproduction of splash-up - qualitative comparison of laboratory photographs (Li 

and Raichlen [2003]) with CMPS-SBV (CMPS with Strain-Based Viscosity), CMPS and standard MPS 

snapshots 
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Fig. 16. CMPS (left) and standard MPS (right) snapshots of plunging wave breaking (H0/h0=0.30) 



 36

 

Fig. 17. Comparison of variation in wave height during breaking and post-breaking (H0/h0=0.30) 

 

 

Fig. 18. Variation of the horizontal velocity of the plunging jet tip - comparison between the CMPS and 

standard MPS results (H0/h0=0.30) 

 

 

Fig. 19. CMPS and standard MPS predictions of the trajectory of the plunging jet tip (H0/h0=0.30) 
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Fig. 20. Definition sketch of the geometrical parameters for describing the plunging jet 
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Fig. 21. Comparison between the CMPS and standard MPS results (a) Horizontal length L1 (b) thickness L2 

(c) thickness L3 of the plunging jet (H0/h0=0.30) 
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Fig. 22. CPU time of principal routines per time step in the MPS, CMPS and CMPS-SBV methods for 

calculation of wave breaking and post-breaking 
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