7 research outputs found
Coulomb dissociation of O-16 into He-4 and C-12
We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4
Coulomb dissociation of 16O into 4He and 12C
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision
Investigation of 54Fe(n,γ)55Fe and 35Cl(n, γ)36Cl reaction cross sections at keV energies by accelerator mass spectrometry
Activations with neutrons in the keV energy range were routinely performed at the Karlsruhe Institute of Technology (KIT) in Germany in order to simulate stellar conditions for neutron-capture cross sections. A quasi-Maxwell-Boltzmann neutron spectrum of kT = 25 keV, being of interest for the astrophysical s-process, was produced by the 7Li(p,n) reaction utilizing a 1912 keV proton beam at the Karlsruhe Van de Graaff accelerator. Activated samples resulting in long-lived nuclear reaction products with half-lives in the order of yr 100 Myr were analyzed by Accelerator Mass Spectrometry (AMS). Comparison of the obtained reaction cross sections to literature data from previous Time-of-Flight (ToF) measurements showed that the selected AMS data are systematically lower than the ToF data. To investigate this discrepancy, 54Fe(n,γ)55Fe and 35Cl(n,γ)36Cl reaction cross sections were newly measured at the Frankfurt Neutron Source (FRANZ) in Germany. To complement the existing data, an additional neutron activation of 54Fe and 35Cl at a proton energy of 2 MeV was performed. The results will give implications for the stellar environment at kT = 90 keV, reaching the not yet experimentally explored high-energy s-process range. AMS measurements of the activated samples are scheduled
Investigation of 54Fe(n,γ)55Fe and 35Cl(n, γ)36Cl reaction cross sections at keV energies by Accelerator Mass Spectrometry
Activations with neutrons in the keV energy range were routinely performed at the Karlsruhe Institute of Technology (KIT) in Germany in order to simulate stellar conditions for neutron-capture cross sections. A quasi-Maxwell-Boltzmann neutron spectrum of kT = 25 keV, being of interest for the astrophysical s-process, was produced by the 7Li(p,n) reaction utilizing a 1912 keV proton beam at the Karlsruhe Van de Graaff accelerator. Activated samples resulting in long-lived nuclear reaction products with half-lives in the order of yr 100 Myr were analyzed by Accelerator Mass Spectrometry (AMS). Comparison of the obtained reaction cross sections to literature data from previous Time-of-Flight (ToF) measurements showed that the selected AMS data are systematically lower than the ToF data. To investigate this discrepancy, 54Fe(n,γ)55Fe and 35Cl(n,γ)36Cl reaction cross sections were newly measured at the Frankfurt Neutron Source (FRANZ) in Germany. To complement the existing data, an additional neutron activation of 54Fe and 35Cl at a proton energy of 2 MeV was performed. The results will give implications for the stellar environment at kT = 90 keV, reaching the not yet experimentally explored high-energy s-process range. AMS measurements of the activated samples are scheduled
Investigation of the
The neutron activation method is well-suited to investigate neutron-capture cross sections relevant for the main s-process component. Neutrons can be produced via the 7Li(p,n) reaction with proton energies of 1912 keV at e.g. Van de Graaff accelerators, which results in a quasi-Maxwellian spectrum of neutrons corresponding to a temperature of kBT = 25 keV. However, the weak s-process takes place in massive stars at temperatures between 25 and 90 keV. Simulations using the PINO code [2] suggest that a Maxwellian spectrum for higher energies, e.g. kBT = 90 keV, can be approximated by a linear combination of different neutron spectra. To validate the PINO code at proton energies Ep ≠ 1912 keV, neutron time-of-flight measurements were carried out at the PTB Ion Accelerator Facility (PIAF) at the Physikalisch-Technische Bundesanstalt in Braunschweig, Germany
Investigation of
Activations with neutrons in the keV energy range were routinely performed at the Karlsruhe Institute of Technology (KIT) in Germany in order to simulate stellar conditions for neutron-capture cross sections. A quasi-Maxwell-Boltzmann neutron spectrum of kT = 25 keV, being of interest for the astrophysical s-process, was produced by the 7Li(p,n) reaction utilizing a 1912 keV proton beam at the Karlsruhe Van de Graaff accelerator. Activated samples resulting in long-lived nuclear reaction products with half-lives in the order of yr 100 Myr were analyzed by Accelerator Mass Spectrometry (AMS). Comparison of the obtained reaction cross sections to literature data from previous Time-of-Flight (ToF) measurements showed that the selected AMS data are systematically lower than the ToF data. To investigate this discrepancy, 54Fe(n,γ)55Fe and 35Cl(n,γ)36Cl reaction cross sections were newly measured at the Frankfurt Neutron Source (FRANZ) in Germany. To complement the existing data, an additional neutron activation of 54Fe and 35Cl at a proton energy of 2 MeV was performed. The results will give implications for the stellar environment at kT = 90 keV, reaching the not yet experimentally explored high-energy s-process range. AMS measurements of the activated samples are scheduled
Coulomb dissociation of ¹⁶O into ⁴He and ¹²C
We measured the Coulomb dissociation of ¹⁶O into ⁴He and ¹²C at the R³B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the ¹²C(α,γ)¹⁶O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 10⁹ ¹⁶O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into ¹²C and ⁴He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for ¹⁶O, ¹²C and ⁴He. Hence, radical changes of the R³B setup were necessary. All detectors had slits to allow the passage of the unreacted ¹⁶O ions, while ⁴He and ¹²C would hit the detectors’ active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision