2,253 research outputs found

    A facet is not an island: step-step interactions and the fluctuations of the boundary of a crystal facet

    Full text link
    In a recent paper [Ferrari et al., Phys. Rev. E 69, 035102(R) (2004)], the scaling law of the fluctuations of the step limiting a crystal facet has been computed as a function of the facet size. Ferrari et al. use rigorous, but physically rather obscure, arguments. Approaching the problem from a different perspective, we rederive more transparently the scaling behavior of facet edge fluctuations as a function of time. Such behavior can be scrutinized with STM experiments and with numerical simulations.Comment: 3 page

    A Number of Quasi-Exactly Solvable N-body Problems

    Get PDF
    We present several examples of quasi-exactly solvable NN-body problems in one, two and higher dimensions. We study various aspects of these problems in some detail. In particular, we show that in some of these examples the corresponding polynomials form an orthogonal set and many of their properties are similar to those of the Bender-Dunne polynomials. We also discuss QES problems where the polynomials do not form an orthogonal set.Comment: 17pages, Revtex, no figur

    Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation

    Get PDF
    We obtain exact moving and stationary, spatially periodic and localized solutions of a generalized discrete nonlinear Schr\"odinger equation. More specifically, we find two different moving periodic wave solutions and a localized moving pulse solution. We also address the problem of finding exact stationary solutions and, for a particular case of the model when stationary solutions can be expressed through the Jacobi elliptic functions, we present a two-point map from which all possible stationary solutions can be found. Numerically we demonstrate the generic stability of the stationary pulse solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.

    Folding of Cu, Zn superoxide dismutase and Familial Amyotrophic Lateral Sclerosis

    Get PDF
    Cu,Zn superoxide dismutase (SOD1) has been implicated in the familial form of the neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). It has been suggested that mutant mediated SOD1 misfolding/aggregation is an integral part of the pathology of ALS. We study the folding thermodynamics and kinetics of SOD1 using a hybrid molecular dynamics approach. We reproduce the experimentally observed SOD1 folding thermodynamics and find that the residues which contribute the most to SOD1 thermal stability are also crucial for apparent two-state folding kinetics. Surprisingly, we find that these residues are located on the surface of the protein and not in the hydrophobic core. Mutations in some of the identified residues are found in patients with the disease. We argue that the identified residues may play an important role in aggregation. To further characterize the folding of SOD1, we study the role of cysteine residues in folding and find that non-native disulfide bond formation may significantly alter SOD1 folding dynamics and aggregation propensity.Comment: 16 pages, 5 figure

    New Shape Invariant Potentials in Supersymmetric Quantum Mechanics

    Get PDF
    Quantum mechanical potentials satisfying the property of shape invariance are well known to be algebraically solvable. Using a scaling ansatz for the change of parameters, we obtain a large class of new shape invariant potentials which are reflectionless and possess an infinite number of bound states. They can be viewed as q-deformations of the single soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for energy eigenvalues, eigenfunctions and transmission coefficients are given. Included in our potentials as a special case is the self-similar potential recently discussed by Shabat and Spiridonov.Comment: 8pages, Te

    Center and representations of infinitesimal Hecke algebras of sl_2

    Full text link
    In this paper, we compute the center of the infinitesimal Hecke algebras Hz associated to sl_2 ; then using nontriviality of the center, we study representations of these algebras in the framework of the BGG category O. We also discuss central elements in infinitesimal Hecke algebras over gl(n) and sp(2n) for all n. We end by proving an analogue of the theorem of Duflo for Hz.Comment: Final form, to appear in "Communications in Algebra"; 35 pages, laTe

    Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice

    Get PDF

    Detecting cold gas at intermediate redshifts: GMRT survey using Mg II systems

    Get PDF
    Intervening HI 21-cm absorption systems at z > 1.0 are very rare and only 4 confirmed detections have been reported in the literature. Despite their scarcity, they provide interesting and unique insights into the physical conditions in the interstellar medium of high-z galaxies. Moreover, they can provide independent constraints on the variation of fundamental constants. We report 3 new detections based on our ongoing Giant Metrewave Radio Telescope (GMRT) survey for 21-cm absorbers at 1.10< z_abs< 1.45 from candidate damped Lyman_alpha systems. The 21-cm lines are narrow for the z_abs = 1.3710 system towards SDSS J0108-0037 and z_abs = 1.1726 system toward SDSS J2358-1020. Based on line full-width at half maximum, the kinetic temperatures are <= 5200 K and <=800 K, respectively. The 21-cm absorption profile of the third system, z_abs =1.1908 system towards SDSS J0804+3012, is shallow, broad and complex, extending up to 100 km/s. The centroids of the 21-cm lines are found to be shifted with respect to the corresponding centroids of the metal lines derived from SDSS spectra. This may mean that the 21-cm absorption is not associated with the strongest metal line component.Comment: 13 pages with 5 figures. Accepted for publication in ApJ

    Goethite on Mars - A laboratory study of physically and chemically bound water in ferric oxides

    Get PDF
    Thermogravimetric study of physically and chemically bound water in ferric oxides of limonite with application to goethite on Mar

    Domain Wall and Periodic Solutions of Coupled phi4 Models in an External Field

    Full text link
    Coupled double well (phi4) one-dimensional potentials abound in both condensed matter physics and field theory. Here we provide an exhaustive set of exact periodic solutions of a coupled ϕ4\phi^4 model in an external field in terms of elliptic functions (domain wall arrays) and obtain single domain wall solutions in specific limits. We also calculate the energy and interaction between solitons for various solutions. Both topological and nontopological (e.g. some pulse-like solutions in the presence of a conjugate field) domain walls are obtained. We relate some of these solutions to the recently observed magnetic domain walls in certain multiferroic materials and also in the field theory context wherever possible. Discrete analogs of these coupled models, relevant for structural transitions on a lattice, are also considered.Comment: 35 pages, no figures (J. Math. Phys. 2006
    corecore