5 research outputs found

    Mycobacterium tuberculosis RuvA Induces Two Distinct Types of Structural Distortions between the Homologous and Heterologous Holliday Junctions

    No full text
    A central step in the process of homologous genetic recombination is the strand exchange between two homologous DNA molecules, leading to the formation of the Holliday junction intermediate. Several lines of evidence, both in vitro and in vivo, suggest a concerted role for the Escherichia coli RuvABC protein complex in the process of branch migration and the resolution of the Holliday junctions. A number of investigations have examined the role of RuvA protein in branch migration of the Holliday junction in conjunction with its natural cellular partner, RuvB. However, it remains unclear whether the RuvABC protein complex or its individual subunits function differently in the context of DNA repair and homologous recombination. In this study, we have specifically investigated the function of RuvA protein using Holliday junctions containing either homologous or heterologous arms. Our data show that Mycobocterium tuberculosis ruvA complements E. coli Delta ruvA mutants for survival to genotoxic stress caused by different DNA-damaging agents, and the purified RuvA protein binds HJ in preference to any other substrates. Strikingly, our analysis revealed two distinct types of structural distortions caused by M. tuberculosis RuvA between the homologous and heterologous Holliday junctions. We interpret these data as evidence that local distortion of base pairing in the arms of homologous Holliday junctions by RuvA might augment branch migration catalyzed by RuvB. The biological significance of two modes of structural distortion caused by M. tuberculosis RuvA and the implications for its role in DNA repair and homologous recombination are discussed

    Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA: Additional role of RuvB-binding domain and inter species variability

    No full text
    RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications

    The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action

    Get PDF
    Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis
    corecore