3,004 research outputs found

    Relevance of unilateral and bilateral sexual polyploidization in relation to intergenomic recombination and introgression in Lilium species hybrids

    Get PDF
    Sexual polyploids were induced in diploid (2n = 2x = 24) interspecific F1 hybrids of Longiflorum × Asiatic (LA) and Oriental × Asiatic (OA) Lilium hybrids by backcrossing to Asiatic (AA) parents as well as by sib-mating of the F1 LA hybrids. A majority of the BC1 progenies were triploid and the progenies from sib-mating were tetraploid or near tetraploids. Genomic in situ hybridization (GISH) technique was applied to assess the intergenomic recombination in the BC1 populations of LA and OA hybrids obtained after unilateral sexual polyploidization. A total of 63 LA (LA × AA and AA × LA) and 53 OA hybrids were analysed. LA hybrids were originated through the functioning of 2n gametes either as 2n eggs or 2n pollen while those of OA hybrids originated through functional 2n pollen of diploid OA genotype. In both type of crosses, a majority of the progenies had originated through First Division Restitution (FDR) mechanism of functional 2n gamete either with or without a cross over. However, there were nine LA- and four OA-genotypes where Indeterminate Meiotic Restitution (IMR) was the mechanism of 2n gamete formation. Based on GISH, total amount of introgression of Longiflorum and Oriental genome into Asiatic genome was determined. Most of the BC progenies exhibited recombination and the amount of recombination was higher in LA hybrids as compared to OA hybrids. Intergenomic recombination was also determined cytologically in the 16 plants of sib-mated LA hybrids where both parents had contributed 2n gametes. Based on these results the nature of interspecific lily hybrids obtained from uni- and bilateral sexual polyploidization leading to allotriploid and allotetraploid formation is discussed in the context of introgression and intergenomic recombinatio

    Security issues in 5G device to device communication

    Get PDF
    5G is a promising technology that will support high connectivity and device to device communication. It also promises to improve the existing technologies and will support them. Existing LTE-A utilize centralized communication scheme where all the authentication mechanisms need to go through the base station. This centralized authentication mechanism may generate authentication and key management overhead as well as computational complexity, thus not in line with the 5G requirements. On the other hand, distributed communication scheme lacks hop by hop authentication, thus, it is challenging to share the initial security credentials within the relay stations at multi-hop. Secondly, distributed communication scheme required decode and forward relays, a partial intelligent relays that can act as a semi base stations. Such relays are known as non-transparent relays. However, inclusion of such intelligent relays can leads towards a ROGUE RELAY STATION (RRS) attacks, which consequently generate Replay attacks, DoS and the MITM (where mutual authentication is absent). RRS can generate interleaving attack even in the presence of mutual authentication

    Deconfining transition in two-flavor QCD

    Get PDF
    The order and the nature of the finite-temperature phase transition of QCD with two flavors of dynamical quarks is investigated. An analysis of the critical exponent of the specific heat is performed through finite-size and finite-mass scaling of various susceptibilities. Dual superconductivity of QCD vacuum is investigated using a disorder parameter, namely the v.e.v. of a monopole creation operator. Hybrid R simulations were run at lattice spatial sizes of 12312^3, 16316^3, 20320^3 and 32332^3 and temporal size Nt=4N_t=4, with quark masses in the range amq=0.30.01am_q = 0.3 - 0.01.Comment: Lattice2003(topology), 3 page

    Quark helicity flip generalized parton distributions from two-flavor lattice QCD

    Get PDF
    We present an initiatory study of quark helicity flip generalized parton distributions (GPDs) in n_f=2 lattice QCD, based on clover-improved Wilson fermions for a large number of coupling constants and pion masses. Quark helicity flip GPDs yield essential information on the transverse spin structure of the nucleon. In this work, we show first results on their lowest moments and dipole masses and study the corresponding chiral and continuum extrapolations.Comment: 15 pages, 6 figure

    Generalized parton distributions and transversity from full lattice QCD

    Full text link
    We present here the latest results from the QCDSF collaboration for moments of generalized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.Comment: Talks presented by Ph.Hagler and J.Zanotti at BARYONS 2004, Paris, Oct. 25-29, 2004, 8 pages, 5 figure

    Fabrication of Diamond Nanowires for Quantum Information Processing Applications

    Full text link
    We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including Au\mathrm{Au}, SiO2\mathrm{SiO_{2}} and Al2O3\mathrm{Al_2O_3}) as well as electron beam lithography defined spin-on glass and evaporated Au\mathrm{Au} have been used as an etch mask. We found Al2O3\mathrm{Al_2O_3} nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are \unit[\approx1]{\mu m} and \unit[120-340]{nm}, respectively, having a \unit[200]{nm/min} etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were \unit[1-2.4]{\mu m} and \unit[120-490]{nm} with etch rates between \unit[190-240]{nm/min}.Comment: 11 pages, 26 figures, submitted to Diamond and related Materials; http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWV-4Y7MM1M-1&_user=10&_coverDate=01%2F25%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6dc58b30f4773a710c667306fc541cc

    Neurodegenerative and functional signatures of the cerebellar cortex in m.3243A \u3e G patients

    Get PDF
    Mutations of the mitochondrial DNA are an important cause of inherited diseases that can severely affect the tissue\u27s homeostasis and integrity. The m.3243A \u3e G mutation is the most commonly observed across mitochondrial disorders and is linked to multisystemic complications, including cognitive deficits. In line with in vitro experiments demonstrating the m.3243A \u3e G\u27s negative impact on neuronal energy production and integrity, m.3243A \u3e G patients show cerebral grey matter tissue changes. However, its impact on the most neuron dense, and therefore energy-consuming brain structure - the cerebellum - remains elusive. In this work, we used high-resolution structural and functional data acquired using 7 T MRI to characterize the neurodegenerative and functional signatures of the cerebellar cortex in m.3243A \u3e G patients. Our results reveal altered tissue integrity within distinct clusters across the cerebellar cortex, apparent by their significantly reduced volume and longitudinal relaxation rate compared with healthy controls, indicating macroscopic atrophy and microstructural pathology. Spatial characterization reveals that these changes occur especially in regions related to the frontoparietal brain network that is involved in information processing and selective attention. In addition, based on resting-state functional MRI data, these clusters exhibit reduced functional connectivity to frontal and parietal cortical regions, especially in patients characterized by (i) a severe disease phenotype and (ii) reduced information-processing speed and attention control. Combined with our previous work, these results provide insight into the neuropathological changes and a solid base to guide longitudinal studies aimed to track disease progression

    Hybrid Monte Carlo with Fat Link Fermion Actions

    Get PDF
    The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions

    A lattice NRQCD calculation of the B0Bˉ0B^0-\bar{B}^0 mixing parameter B_B

    Get PDF
    We present a lattice calculation of the B meson B-parameter B_B using the NRQCD action. The heavy quark mass dependence is explicitly studied over a mass range between m_b and 4m_b with the O(1/mQ)O(1/m_Q) and O(1/mQ2)O(1/m_Q^2) actions. We find that the ratios of lattice matrix elements /2/^2 and /2/^2, which contribute to B_B through mixing, have significant 1/mQ1/m_Q dependence while that of the leading operator /2/^2 has little 1/mQ1/m_Q effect. The combined result for B_B(m_b) has small but non-zero mass dependence, and the B_B(m_b) becomes smaller by 10% with the 1/m_Q correction compared to the static result. Our result in the quenched approximation at \beta=5.9 is B_{B_d}(5 GeV) = 0.75(3)(12), where the first error is statistical and the second is a systematic uncertainty.Comment: 20 pages, 11 figures, uses REVTeX, typos correcte

    Gravitational Collapse: Expanding and Collapsing Regions

    Full text link
    We investigate the expanding and collapsing regions by taking two well-known spherically symmetric spacetimes. For this purpose, the general formalism is developed by using Israel junction conditions for arbitrary spacetimes. This has been used to obtain the surface energy density and the tangential pressure. The minimal pressure provides the gateway to explore the expanding and collapsing regions. We take Minkowski and Kantowski-Sachs spacetimes and use the general formulation to investigate the expanding and collapsing regions of the shell.Comment: 12 pages, 4 figures, accepted for publication in Gen. Relativ. Gra
    corecore