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Abstract

We present an initiatory study of quark helicity flip generalized parton distributions (GPRs)#n2 lattice QCD, based
on clover-improved Wilson fermions for a large number of coupling constants and pion masses. Quark helicity flip GPDs yield
essential information on the transverse spin structure of the nucleon. In this work, we show first results on their lowest moments
and dipole masses and study the corresponding chiral and continuum extrapolations.
0 2005 Elsevier B.\MOpen access under CC BY license.

1. Introduction

Generalized parton distributions (GPD$) have opened new ways of studying the complex interplay of longi-
tudinal momentum and transverse coordinate sfia&}, as well as spin and orbital angular momentum degrees
of freedom in the nucleof]. As a counting of the helicity amplitudes Fig. 1reveals[5], there are eight inde-
pendent real functions needed at twist 2. Four of them, nafielyE, Hr and E7, are related to a flip of the
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Fig. 1. The lower part of the handbag diagram.

quark helicity,u = —u/, hencequark helicity flipGPDs! Quark helicity flip GPDs play a prominent role in the
understanding of the transverse spin structure of the nucleon and significantly sharpen positivity bounds on GPDs
in impact parameter spaf@]. Specifically, it could be very interesting to exploit and study the equation-of-motion
relations between the lowest moments of quark helicity flip, unpolarized and twist-3 GPDs which have been ob-
tained in[6]. The (chirally odd) tensor GPDs also provide a framework with which to study the correlation between
quark spin and quark angular momentum in unpolarized nuclgdns

Quark helicity flip GPDs are defined via the parameterization of an off-forward nucleon matrix element of a
guark operator involving the*"-tensor as follow$5]:

o0
dxr . A A
(P, A / Eew‘q<—§n>io“”q<§n)|P,A)
—00

V[MAV]
=ﬁ(P’,A’)(iG“”HT(x,S,t)+ Er(x,§,1)
pleavl _ ympv] N
" Hr(x,§,1)+ - ET(LSJ))M(P,A)- (1)

Here the momentum transfer is given by= P’ — P with r = A2, P = (P' + P)/2, andé = —n - A/2 denotes the
longitudinal momentum transfer, wherés a light-like vector, whiley, u denote the quark field and nucleon spinor,
respectively. The first of these tensor GPBg;,(x, &, t), is called generalized transversity, because it reproduces
the transversity distribution in the forward lim#y (x, 0, 0) = §g (x) = h1(x). IntegratingHr (x, &, t) overx gives

the tensor form factor:

1
/dxHT(x,s,t)=gT(z). 2

-1

Since the quark tensor GPDs require a helicity flip of the quarks, they do not contribute to the deeply virtual
Compton scattering (DVCS) procegs p — yp’. Naively, one could think that this could be balanced by the
production of a transversely polarized vector meson instead of a phaten,—~ mr p’. However, it has been
shown that the corresponding amplitude, remarkably, vanishes at leading twist to all orders in perturbation theory
[8-10] The only process giving access to the generalized transversity which has been proposed in the literature sc
far is the diffractive double meson productiptip — mym7 p’ [11]. Naturally, one expects the measurement of
this reaction to be much more involved than, e.g., the exclusive electroproduction of a single vector meson. Since
the tensor GPDs are practically unknown, it is unclear how to even estimate the corresponding cross section to se
if a measurement of this process is at all feasible. Given that the situation seems to be much more difficult than for
the (un)polarized GPDs, lattice calculations of the lowest moments of the quark helicity flip GPDs will be highly
valuable. While (un)polarized GPDs have already been investigated in a number of [i20d18] we present
here the first lattice calculation of quark helicity flip GPDs.

1 Also called tensor GPDs.
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Lattice calculations of moments of parton distributions mostly disregard the computationally expensive quark-
line disconnected contributions. They correspond to a situation where the operator is inserted into a closed quark
loop which is connected to the nucleon only via gluons. Since the tensor operators flip the quark helicity, these dis-
connected diagrams do not contribute in the continuum theory for vanishing quark masses. Therefore, we expect
only small contributions for the disconnected graphs in our calculation. This expectation is supported by numerical
results from[20], where the tensor charge was calculated in quenched lattice QCD. The authors explicitly com-
puted the disconnected pieces for the tensor operator and found the contributions from up- and down-quarks to be
compatible with zero within one standard deviation. Thus, it is possible to estimate the individual up and down
quark tensor GPDs, which is a major advantage compared to other observables where usually only the isovector
channel is considered. Further early results on the tensor charge in quenched lattice QCD have been presented ir
[21,22]

As mentioned above, in calculating the lowest moments of the tensor BRD, &, ¢), we automatically ob-
tain the corresponding moments of the transversity distributiofr;1)s, for r = & = 0. The quark transversity
has recently attracted renewed attention related to the Collins asymmetry in, e.g., semi-inclusive deep inelastic
scattering. It is generally believed that transverse single-spin asymmetries[@3%Ade generated predominantly
by the Sivers and Collins mechanism. These two differ in their dependence on the azimuthal angles and thus can
be separated. The contribution due to the Collins mechanism is proportional to a convolution of the transversity
distributiondg (x) and the Collins fragmentation functidﬁili(z), which are both chiral odd. Lack of knowledge
of both the transversity and the Collins function, however, seriously hampers the interpretation of the exciting ex-
perimental results on such SSE1,25] Lattice results for the lowest momentsdaf(x) for up and down quarks
could help to reveal the physics behind these measured asymmetries.

The Letter is organized as follows. We begin by briefly reminding the reader of the methods and techniques
we use to extract moments of GPDs from the lattice in Se@idn Section3, we specify the parameters of our
calculation and present our results for the lowest moments of the tensoHzRD &, r). Making use of the large
number of results for different sets of lattice parameters, we attempt to extrapolate the moments of the generalized
transversity as well as the dipole masses of the tensor GPDs to the continuum and chiral limits. Finally, iMSection
we summarize our findings.

2. Extracting moments of GPDs from lattice smulations

On the lattice, it is not possible to deal directly with matrix elements of bilocal light-cone operators. Therefore,
we first transform the LHS of Eqlj to Mellin space by integrating over, i.e.,ffl dx x"~1. This results in nucleon
matrix elements of towers of local tensor operators

O+ 14(0) = G (@)ic i D' -++i D g(0), 3

which are in turn parameterized in terms of the tensor generalized form factors (&FFSBrni, ATni andBry;.

Here and in the foIIowingB = %(5 — 5) and{- - -} indicates symmetrization of indices and subtraction of traces.
The parameterization for arbitraryis given in[26,27]2 Here we show explicitly only the expressions for the
lowest two moments. For =1 we have

plu Av] e AV]

A710(t) +

(P'A'1G(0)ic""q(0)| P A) Zﬁ(P/,A/){iG“”Arlo(t) + BTlo(t)}u(P, A). (4

m2

The inclusion of an additional terax y[* PVl = y# P¥ — 1V P in Eq. (4) is forbidden by time reversal symme-
try [5]. Forn = 2, however, this can be balanced by including another factar, ¢tdading to four generalized form

2 Note that the Mellin-moment indexused here differs from the number of covariant derivativés [26] by one.
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factors,

<>
A[W]S{Wl}(P’A/|c](0)i0’“’i D"g(0)|PA)
ple pvl

- P*M Aro(t)

= Apv1Stoug)#(P', A/){ia"”ﬁ‘”Arzo(t) +

e pv] _ [ pv]
v PH1Broo(t) + v

- AP Bro(1) }u(P, 4), (5)
up to trace terms, whet&y,,; andS,,; denote antisymmetrization and symmetrizatiogofv), respectively. For
n = 3 there are seven independent tensor GFFs, as an explicit counting[26cR7 The simultaneous extraction
of such a large number of GFFs poses a challenge for lattice QCD calculations, which we plan to address in the
near future.
Instead of calculating continuum Minkowski space—time matrix elements (e.g., ifEagsd (5) directly, on
the lattice we work within a discretized Euclidean space—time framework to calculate nucleon two- and three-point
correlation functions. The nucleon two- and three-point functions are given by

C%'(x, P) =) Fia(Ni(r, P)N; (tsrc, P)),
Jok
3 weMn— - R \/
caritn L@ PPy =3 Fi(Ni(tsnke PHOY "1 (0) N (tsrc, P)). (6)
ok
where I" is a (spin) projection matrix and the operatd¥sand N create and destroy states with the quantum

numbers of the nucleon, respectively. The relatiorﬁgt to the parameterizations in Eqg) and (5)is seen by
rewriting Eq.(6) using complete sets of states and the time evolution operator,

7 p"\\1/2
ZPYZPDYZ (e~ E P (tsmc0)
4E(P)E(P)

X Z(P/,A/|OI;VM1"'M"71|P,A)IZ(P,A)I:M(P/, A/)+ (7)
AN

C?)ptﬂuﬂlmﬂnfl(r’ P/, P) —

Similarly, the two-point function foi” = 1/2(1 + y4) can be written as

P, Py = (2(P)Z(P)) P ELL BP0 ®)
E(P)
Here and belowy denotes the mass of the nucleon ground state. The ellipsis ir{Bgs1d (8)represents excited
states with energie8’ > E(P), E(P’), which are exponentially suppressed as long aSsic>>> 1/E’, Tsnk— T >
1/E’. Inserting the explicit parameterizations from E. and (5)transformed to Euclidean space into Eg),
we sum over polarizations to obtain

C(?;)ptlwul'”u"*l(r, P/, P)
_ EPYZPDY? )t E P )
AE(P)E(P)
x TI[F P —m)(ag™" " Apno() + b7 " Brao(@) + - --) (P —m)], ©
where, e.g.a#”“1 is the Euclidean version of the prefacter*’ P#1 in Eq. (5). The Dirac-trace in Eq(9) is

evaluated explicitly, while the normalization factor and the exponentials i/ gre cancelled out by constructing
an appropriate -independent rati® of two- and three-point functions,
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CPe, P, PY[ C2P(z, P')CPPY(zgn P)CP(tsnk— T + Tsr P) ™
C2PY(tgnK, P') | C2PY(z, P)C2PY gk, P)CZPY(Tgnk — T + Tsrc, P)

The ratioR is evaluated numerically and then equated with the corresponding sum of GFFsRinaesl P’-
dependent calculable pre-factors, coming from the traces i9d-or a given moment, this is done simultane-
ously for all contributing index combinatioigvus . .. u,—1) and all discrete lattice momen#a P’ corresponding

to the same value af= (P’ — P)2. This procedure leads, in general, to an overdetermined set of equations from
which we finally extract the GFH4.6]. We have taken care to ensure that our normalization leads exactly to the
x-moment of the transversity distributidg (x) = h1(x) as defined ifi28]. To make this as transparent as possible,
we give an explicit example of one of the equations we use to extract

Ro(z, P, P)= (10)

R2134) _ X, P'=(m.0).P=m.0) 1 L 1)
=——(x
C2PY(tgnk, P = (m, O)) S %2

where only thel'; (see Eq(17)) projector contributes and{24} represents the operatge 23 4}q The factor
1/2« accounts for the fact that the continuum quark fields+dBe times the lattice quark fields, whexeis the
hopping parameter entering the Wilson fermion action.

On the lattice the space—time symmetry is reduced to the hypercubic gr@)pand the lattice operators have
to be chosen such that they belong to irreducible multiplets uftidy. Furthermore, one would like to avoid
mixing under renormalization as far as possible. In the case of the twist-2 operators(8),Eq.more precisely
their Euclidean counterparts, this presents no problem ferl andn = 2, the only cases to be considered in this
Letter. Forn = 1 we have the 6-dimensional multiplet consisting of the operators

q(0)iouvg(0), (12)

which is irreducible in the continuum as well as on the lattidé4) representatioml(G) in the notation 0f29]). The
16-dimensional space of continuum twist-2 operators with 2 decomposes into two 8-dimensional multiplets

transforming according to the inequivalent representatt'{)ﬁsandrz(s). Typical members of these multiplets are,
e.g.,

é(o)(ialzgz—idngs)qm) (13)

in the case otl(g), and

67(0)(i01283+i01332)q(0) (14)

for r ) All these operators are free of mixing problems, but one has to take into account that operators belonging
to mequwalent representations have different renormalization factors.

Obviously, for a successful computation of the GFFs, one would like to have as many different nucleon
sink and source momenta and projection operaféras possible in order to obtain a large number of inde-
pendent non-vanishing Dirac-traces in K§). This is particularly true for the tensor operators because they
involve oV and the number of tensor GFFs grows rapidly withOnce we have extracted the GFFs from the
lattice correlation functions, it is an easy exercise to reconstruct the corresponding moments of tensor GPDs,
H} (&, 1) = [dx x"~YHy(x, &, 1) etc., using the polynomiality relatiofiz6]

HIZYE, ) = Arwo) =gr(®),  HJ72(E,1) = Arao(t),
ApYE. ) = Araolo), Hi~2(8.1) = Ar20(0).
Ej~YE, 1) = Brao(o), E7~*(€.1) = Brao®),
EXYE, 1) = Brio(t) =0, Ef=2(5,1) = (—28) Braa(0). (15)
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Table 1

Lattice parameters: gauge coupliAgsea quark hopping parameiges lattice volume, number of trajectories, lattice spacing and pion mass
B Ksea Volume Niraj a (fm) my (GeV)
5.20 013420 16 x 32 O(5000 0.1145 1007(2)
5.20 013500 16 x 32 O(8000 0.0982 0833(3)
5.20 013550 16 x 32 O(8000 0.0926 06193)
5.25 013460 16 x 32 O(5800 0.0986 0987(2)
5.25 013520 16 x 32 O(8000 0.0909 08293
5.25 013575 248 x 48 O(5900 0.0844 0597(1)
5.29 013400 16 x 32 O(4000 0.0970 1173(2)
5.29 013500 16 x 32 O(5600 0.0893 0929(2)
5.29 013550 24 x 48 O(2000 0.0839 Q07692)
5.40 013500 24 x 48 O(3700 0.0767 1037(1)
5.40 013560 28 % 48 O(3500 0.0732 0842(2)
5.40 013610 24 x 48 O(3500 0.0696 0626(2)

These equations directly show that fox 2, a dependence on the longitudinal momentum trargsieionly seen
for the GPDE7, which is the only quark GPD odd in In order to investigate thie dependence of the generalized
transversityH;. (£, t), one has to consider at least the= 3 Mellin moment. Finally, we note that in the forward
limit the momentsH ;. (£, 1) reduce to the moments of the transversity distributidfi(é =0, =0) = (xn=1ys.

3. Latticeresultsfor moments of the generalized transver sity

The simulations are done witty = 2 flavors of dynamical non-perturbativet¥(a) improved Wilson fermions
and Wilson glue. For four different valugs= 5.20, 525, 529, 540 and three different = kseavalues peB we
have in collaboration with UKQCD generat&2i2000—8000 trajectories. Lattice spacings and spatial volumes
vary between 0.07-0.11 fm and (1.4-2.0 $nmespectively. A summary of the parameter space spanned by our
dynamical configurations can be foundTiable 1 We set the scale via the force parametetinstead of using the
conventional valueg = 0.5 fm we extrapolate recent results for the dimensionless nucleonmassobtained
by the CP-PACS, JLQCD and QCDSF-UKQCD Collaborations jointly to the physical pion mass, foll{8Ghg
This gives the valuey = 0.467 fm. A similar result was quoted [B1].

Correlation functions are calculated on configurations taken at a distance of 5-10 trajectories using 4-8 different
locations of the fermion source. We use binning to obtain an effective distance of 20 trajectories. The size of the
bins has little effect on the error, which indicates auto-correlations are small. In this work, we simulate with three
choices of sink moment&’ and polarization operators, namely,

- - 2 o 2w
Py=0,0,0, P{= (—”, 0, o), Py= (o, —,o>, (16)
Lg Lg
whereLg is the spatial extent of the lattice, and
- 1 - 1 . 1
Funpol = 5 (1 + ya), I= 50+ yaiysyr, 2= 51+ yaiysy. (17)

The choice of the two polarization projectoﬁ, andr is particularly advantageous for the extraction of the tensor
GFFs. The values of the momentum transfee (27 /Ls)g used in this analysis are

g: (0,0,0), (1,0,0, (1,1,0, (1,1,1), (2,0,0) (18)

and the vectors with permuted components. All lattice results below have been non-perturbatively renormalized
[32] and transformed to theS scheme at a renormalization scale of 4 GeV
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Fig. 2. The tensor form factor together with a dipole fit using &§).
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Fig. 3. The GFFA g together with a dipole fit using E19).

In this Letter, we focus on the lowest two moments of the GIRD A broader analysis will, in particular, include
moments of the linear combinatiorfiz (x, £, 1) + E7(x, £, ) which have been shown to play a fundamental role
for the transverse spin structure of the nucl¢@h Furthermore, ir{7] it is claimed that thec-moment of this
linear combination gives the angular momentum carried by quarks with transverse spin in an unpolarized nucleon,
in analogy to Ji's sum rul4]. In Figs. 2 and 3ve show our results for the lowest two moments of the generalized
transversity for up and down quarks in the nucleon as functions of the squared momentum traffsédattice
points and dipole curves are the result of a combined dipole fit together with linear continuum and pion-mass
extrapolations of the form

A(%no(O) + a1m72T + apa?
(1—1t/(m% + azm2)2)2’

dipolemy ,a _
ATno )=

(19)
with five fit parameters&&%nO(O), m% anday, ..., 3. The curves show the fit function in the continuum limit,

i miatt g i mPYS 4—
i.e., fora =0, at the physical pion mass. Correspondingly, the di1‘fereﬂn?¢.ﬁ=gla (1) — ASPOlemT =01 has

been subtracted from the individual data points before plotting. Although the extrapolation to the continuum limit
turns out to be almost flat, except far,(0) for which a; ~ —4.2 4+ 0.7 fm~2, we include thez2-dependence
because it reduces the of the fits considerably. To check our ansatz in @), we show inFig. 4the (effective)

dipole massm% as a function of a cut for minimal and maximal values of the momentum transfer squased

for the fit, rmin < t < tmax (keep in mind that < 0). The effective dipole mass is in both cases very stable and
constant, except whentnax becomes large since there are not enough data points used in the fit to determine the
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Fig. 4. The effective dipole mass as a function of a cut in

dipole mass accurately. Still, a more sophisticated approach is desired for future investigations. Additionally, the
assumed linear dependencea?nandmg eventually has to be replaced by a functional form obtained from, e.g.,
chiral perturbation theory. The quark mass dependence of the first two moments of the (isovector) transversity has
already been investigated [83,34]

The forward moments and dipole massesiat=m""® anda = 0 are found to be

(1% = A%10(0) = 0.857+0.013 mp = 1.73240.036 GeV,

(1§ = A%15(0) = —0.212+0.005  mp =1.741+0.056 GeV,

(x)4 = A%,,(0) = 0.268+ 0.006, mp =2.3124+0.071 GeV,

(x)4 = A%,0(0) = —0.052£0.002  mp =2.448+0.173 GeV, (20)

and for the isovector and isosinglet combinations we obtain the dipole masses

Ar1or m' 9 =173140.034 GeV, m's" =1.71340.043 GeV,
Arzo: m's 4 =2.318+0.067 GeV, m'4! =2.286+0.083 GeV, (21)

which agree with the up- and down-quark dipole masses within errors. Our result for the isovector tensor charge
(1)?“’ = 1.0684 0.016 is in agreement with results [B0] and 5% to 15% lower compared to lattice studies in

[34-37] However, our result for the isovectmrmoment(x)f;_d = 0.322+ 0.006 is substantially lower than the

guoted value on)f;*d = 0.533+ 0.083 (unquenched; = 0.1570, from[36]) and also the chirally extrapolated
value <x>g’—d = 0.506+ 0.089 [34].2 Since the previous worki84,36] used unimproved Wilson fermions with
no continuum extrapolation together with perturbative renormalization of the operators, the numbers should be
compared with some care. Still, the discrepancy could indicate some problems with the normalization.
The explicit dependence of the tensor chaggé = 0) = (1); and thex-moment of the transversityt)s on the
pion mass is shown iRig. 5 where all points have already been extrapolated to the continuum limit. The linearly
extrapolated values atfihys agree within errors with the results from the global fit in E20). From the figures
we see that the tensor charge is approximately constant over the available range of pion masses, W(bcilé, e.g.,
clearly shows a dependencemp and drops by~ 20% going frorrm,zr =1.4 Ge\? down t0m§ =0.4 Ge\2.
Interestingly, our results for the isovector dipole masses for the first two mome#ts afjree very well with
those obtained from fits to the moments of the polarized GR[)38], which are shown to lie on a linear Regge
trajectory. It will be interesting to see if this trend continues for higher moments.

3 This holds also for up and down quarks separately.
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Finally, in Fig. 6 we investigate the Soffer bourig9]

1
[8a ()] < 5(4g () +4 ), (22)

which holds exactly only for quark and antiquark distributions separately. Mellin moments of the distribution
functions as defined in Sectidhgive, however, always sums/differences of moments of quark and antiquark
distributions, e.g.{x"), + (—1)”+1<X”)q. Taking Mellin moments of Eq(22) and assuming that the antiquark
contributions are small, we expect that the ratio

2|(x")s]
((x") + (x™) a)
is smaller than one. Ifig. 6, we show this ratio for up and down contributions as a functiom$f As we can
clearly see from the figure, the ratio in H§3) is smaller than one over the whole range of available pion masses.

Taking into account what has been said above, this strongly indicates that the Soffer bound is satisfied in our lattice
calculation of the lowest two moments of the unpolarized, polarized and transversity quark distributions.

, n=0,1, (23)

4. Conclusions and outlook

We have computed the lowest moments of the quark tensor @PIn lattice QCD and studied the chiral
and continuum limit of the forward moments and the dipole masses. The quark-line disconnected contributions
have been neglected, but we have given reasons why they are expected to be small. Due to the relatively large
pion masses in our simulations only a linear chiral extrapolation was possible. Assuming that contributions from
antiquarks are small, our results indicate that the Soffer bound, relating the transversity, unpolarized and polarized
quark distributions, is satisfied in our calculation.

The results are promising and our study will soon be extended to include the tensorF3PBs and Er.
Once a set of the lowest moments of all tensor GPDs is available, it will be extremely interesting to analyze the
transverse spin density of quarks in the nucleon, the corresponding positivity bounds and the relation to moments
of twist-3 GPDs using sum-rules obtained from the equation of m¢@pn
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