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Abstract

We present an initiatory study of quark helicity flip generalized parton distributions (GPDs) innf = 2 lattice QCD, based
on clover-improved Wilson fermions for a large number of coupling constants and pion masses. Quark helicity flip GP
essential information on the transverse spin structure of the nucleon. In this work, we show first results on their lowest
and dipole masses and study the corresponding chiral and continuum extrapolations.
 2005 Elsevier B.V.

1. Introduction

Generalized parton distributions (GPDs)[1] have opened new ways of studying the complex interplay of lo
tudinal momentum and transverse coordinate space[2,3], as well as spin and orbital angular momentum deg
of freedom in the nucleon[4]. As a counting of the helicity amplitudes inFig. 1 reveals[5], there are eight inde
pendent real functions needed at twist 2. Four of them, namelyHT , ET , H̃T andẼT , are related to a flip of th

E-mail address:meinulf.goeckeler@physik.uni-regensburg.de(M. Göckeler).

Open access under CC BY license.
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.09.002

Open access under CC BY license.

https://core.ac.uk/display/82423264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:meinulf.goeckeler@physik.uni-regensburg.de
http://dx.doi.org/10.1016/j.physletb.2005.09.002
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


114 QCDSF/UKQCD Collaboration / Physics Letters B 627 (2005) 113–123

e
n GPDs
tion

een ob-
tween

nt of a

or,
uces

virtual
the
n
n theory
rature so
t of
n. Since
ion to see
than for
highly
Fig. 1. The lower part of the handbag diagram.

quark helicity,µ = −µ′, hencequark helicity flipGPDs.1 Quark helicity flip GPDs play a prominent role in th
understanding of the transverse spin structure of the nucleon and significantly sharpen positivity bounds o
in impact parameter space[6]. Specifically, it could be very interesting to exploit and study the equation-of-mo
relations between the lowest moments of quark helicity flip, unpolarized and twist-3 GPDs which have b
tained in[6]. The (chirally odd) tensor GPDs also provide a framework with which to study the correlation be
quark spin and quark angular momentum in unpolarized nucleons[7].

Quark helicity flip GPDs are defined via the parameterization of an off-forward nucleon matrix eleme
quark operator involving theσµν -tensor as follows[5]:

〈P ′,Λ′|
∞∫

−∞

dλ

4π
eiλxq̄

(
−λ

2
n

)
iσµνq

(
λ

2
n

)
|P,Λ〉

= ū(P ′,Λ′)
(

iσµνHT (x, ξ, t) + γ [µ∆ν]

2m
ET (x, ξ, t)

(1)+ P̄ [µ∆ν]

m2
H̃T (x, ξ, t) + γ [µP̄ ν]

m
ẼT (x, ξ, t)

)
u(P,Λ).

Here the momentum transfer is given by∆ = P ′ −P with t = ∆2, P̄ = (P ′ +P)/2, andξ = −n ·∆/2 denotes the
longitudinal momentum transfer, wheren is a light-like vector, whileq, u denote the quark field and nucleon spin
respectively. The first of these tensor GPDs,HT (x, ξ, t), is called generalized transversity, because it reprod
the transversity distribution in the forward limit,HT (x,0,0) = δq(x) = h1(x). IntegratingHT (x, ξ, t) overx gives
the tensor form factor:

(2)

1∫
−1

dx HT (x, ξ, t) = gT (t).

Since the quark tensor GPDs require a helicity flip of the quarks, they do not contribute to the deeply
Compton scattering (DVCS) processγ ∗p → γp′. Naively, one could think that this could be balanced by
production of a transversely polarized vector meson instead of a photon,γ ∗p → mT p′. However, it has bee
shown that the corresponding amplitude, remarkably, vanishes at leading twist to all orders in perturbatio
[8–10]. The only process giving access to the generalized transversity which has been proposed in the lite
far is the diffractive double meson productionγ ∗p → mLmT p′ [11]. Naturally, one expects the measuremen
this reaction to be much more involved than, e.g., the exclusive electroproduction of a single vector meso
the tensor GPDs are practically unknown, it is unclear how to even estimate the corresponding cross sect
if a measurement of this process is at all feasible. Given that the situation seems to be much more difficult
the (un)polarized GPDs, lattice calculations of the lowest moments of the quark helicity flip GPDs will be
valuable. While (un)polarized GPDs have already been investigated in a number of papers[12–19], we present
here the first lattice calculation of quark helicity flip GPDs.

1 Also called tensor GPDs.



QCDSF/UKQCD Collaboration / Physics Letters B 627 (2005) 113–123 115

quark-
ed quark
ese dis-
e expect
merical
y com-
rks to be

d down
isovector
sented in

y
inelastic
ly
thus can
sversity
e

ting ex-
s

hniques
ur

neralized
ection

refore,

ces.
he

e-
Lattice calculations of moments of parton distributions mostly disregard the computationally expensive
line disconnected contributions. They correspond to a situation where the operator is inserted into a clos
loop which is connected to the nucleon only via gluons. Since the tensor operators flip the quark helicity, th
connected diagrams do not contribute in the continuum theory for vanishing quark masses. Therefore, w
only small contributions for the disconnected graphs in our calculation. This expectation is supported by nu
results from[20], where the tensor charge was calculated in quenched lattice QCD. The authors explicitl
puted the disconnected pieces for the tensor operator and found the contributions from up- and down-qua
compatible with zero within one standard deviation. Thus, it is possible to estimate the individual up an
quark tensor GPDs, which is a major advantage compared to other observables where usually only the
channel is considered. Further early results on the tensor charge in quenched lattice QCD have been pre
[21,22].

As mentioned above, in calculating the lowest moments of the tensor GPDHT (x, ξ, t), we automatically ob-
tain the corresponding moments of the transversity distribution,〈xn−1〉δ , for t = ξ = 0. The quark transversit
has recently attracted renewed attention related to the Collins asymmetry in, e.g., semi-inclusive deep
scattering. It is generally believed that transverse single-spin asymmetries (SSA)[23] are generated predominant
by the Sivers and Collins mechanism. These two differ in their dependence on the azimuthal angles and
be separated. The contribution due to the Collins mechanism is proportional to a convolution of the tran
distributionδq(x) and the Collins fragmentation functionH⊥

1 (z), which are both chiral odd. Lack of knowledg
of both the transversity and the Collins function, however, seriously hampers the interpretation of the exci
perimental results on such SSAs[24,25]. Lattice results for the lowest moments ofδq(x) for up and down quark
could help to reveal the physics behind these measured asymmetries.

The Letter is organized as follows. We begin by briefly reminding the reader of the methods and tec
we use to extract moments of GPDs from the lattice in Section2. In Section3, we specify the parameters of o
calculation and present our results for the lowest moments of the tensor GPDHT (x, ξ, t). Making use of the large
number of results for different sets of lattice parameters, we attempt to extrapolate the moments of the ge
transversity as well as the dipole masses of the tensor GPDs to the continuum and chiral limits. Finally, in S4
we summarize our findings.

2. Extracting moments of GPDs from lattice simulations

On the lattice, it is not possible to deal directly with matrix elements of bilocal light-cone operators. The
we first transform the LHS of Eq. (1) to Mellin space by integrating overx, i.e.,

∫ 1
−1 dx xn−1. This results in nucleon

matrix elements of towers of local tensor operators

(3)Oµνµ1...µn−1
T (0) = q̄(0)iσµ{νi

↔
D

µ1 · · · i ↔
D

µn−1}q(0),

which are in turn parameterized in terms of the tensor generalized form factors (GFFs)AT ni , BT ni , ÃT ni andB̃T ni .

Here and in the following,
↔
D = 1

2(
−→
D − ←−

D) and{· · ·} indicates symmetrization of indices and subtraction of tra
The parameterization for arbitraryn is given in [26,27].2 Here we show explicitly only the expressions for t
lowest two moments. Forn = 1 we have

(4)〈P ′Λ′|q̄(0)iσµνq(0)|PΛ〉 = ū(P ′,Λ′)
{
iσµνAT 10(t) + P̄ [µ∆ν]

m2
ÃT 10(t) + γ [µ∆ν]

2m
BT 10(t)

}
u(P,Λ).

The inclusion of an additional term∝ γ [µP̄ ν] ≡ γ µP̄ ν − γ νP̄ µ in Eq. (4) is forbidden by time reversal symm
try [5]. Forn = 2, however, this can be balanced by including another factor of∆, leading to four generalized form

2 Note that the Mellin-moment indexn used here differs from the number of covariant derivativesn in [26] by one.
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A[µν]S{νµ1}〈P ′Λ′|q̄(0)iσµνi
↔
D

µ1q(0)|PΛ〉

= A[µν]S{νµ1}ū(P ′,Λ′)
{
iσµνP̄ µ1AT 20(t) + P̄ [µ∆ν]

m2
P̄ µ1ÃT 20(t)

(5)+ γ [µ∆ν]

2m
P̄ µ1BT 20(t) + γ [µP̄ ν]

m
∆µ1B̃T 21(t)

}
u(P,Λ),

up to trace terms, whereA[µν] andS{µν} denote antisymmetrization and symmetrization of(µ, ν), respectively. For
n = 3 there are seven independent tensor GFFs, as an explicit counting shows[26,27]. The simultaneous extractio
of such a large number of GFFs poses a challenge for lattice QCD calculations, which we plan to addre
near future.

Instead of calculating continuum Minkowski space–time matrix elements (e.g., in Eqs.(4) and (5)) directly, on
the lattice we work within a discretized Euclidean space–time framework to calculate nucleon two- and thre
correlation functions. The nucleon two- and three-point functions are given by

C2pt(τ,P ) =
∑
j,k

Γ̃jk

〈
Nk(τ,P )N̄j (τsrc,P )

〉
,

(6)C
3ptµνµ1...µn−1
O (τ,P ′,P ) =

∑
j,k

Γ̃jk

〈
Nk(τsnk,P

′)Oµνµ1...µn−1
T (τ )N̄j (τsrc,P )

〉
,

where Γ̃ is a (spin) projection matrix and the operatorsN̄ and N create and destroy states with the quant
numbers of the nucleon, respectively. The relation ofC

3pt
O to the parameterizations in Eqs.(4) and (5)is seen by

rewriting Eq.(6) using complete sets of states and the time evolution operator,

C
3ptµνµ1...µn−1
O (τ,P ′,P ) = (Z(P )Z̄(P ′))1/2

4E(P ′)E(P )
e−E(P )(τ−τsrc)−E(P ′)(τsnk−τ)

(7)×
∑
Λ,Λ′

〈P ′,Λ′|Oµνµ1...µn−1
T |P,Λ〉ū(P ,Λ)Γ̃ u(P ′,Λ′) + · · · .

Similarly, the two-point function forΓ̃ = 1/2(1+ γ4) can be written as

(8)C2pt(τ,P ) = (
Z(P )Z̄(P )

)1/2E(P ) + m

E(P )
e−E(P )(τ−τsrc) + · · · .

Here and below,m denotes the mass of the nucleon ground state. The ellipsis in Eqs.(7) and (8)represents excite
states with energiesE′ > E(P ),E(P ′), which are exponentially suppressed as long asτ − τsrc� 1/E′, τsnk− τ �
1/E′. Inserting the explicit parameterizations from Eqs.(4) and (5)transformed to Euclidean space into Eq.(7),
we sum over polarizations to obtain

C
3ptµνµ1...µn−1
O (τ,P ′,P )

= (Z(P )Z̄(P ′))1/2

4E(P ′)E(P )
e−E(P )(τ−τsrc)−E(P ′)(τsnk−τ)

(9)× Tr
[
Γ̃ (i/P ′ − m)

(
a

µνµ1...µn−1
T AT n0(t) + b

µνµ1...µn−1
T BT n0(t) + · · ·)(i/P − m)

]
,

where, e.g.,aµνµ1
T is the Euclidean version of the prefactoriσµνP̄ µ1 in Eq. (5). The Dirac-trace in Eq.(9) is

evaluated explicitly, while the normalization factor and the exponentials in Eq.(7) are cancelled out by constructin
an appropriateτ -independent ratioR of two- and three-point functions,
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(10)RO(τ,P ′,P ) = C
3pt
O (τ,P ′,P )

C2pt(τsnk,P ′)

[
C2pt(τ,P ′)C2pt(τsnk,P

′)C2pt(τsnk− τ + τsrc,P )

C2pt(τ,P )C2pt(τsnk,P )C2pt(τsnk− τ + τsrc,P ′)

]1/2

.

The ratioR is evaluated numerically and then equated with the corresponding sum of GFFs timesP - andP ′-
dependent calculable pre-factors, coming from the traces in Eq.(9). For a given momentn, this is done simultane
ously for all contributing index combinations(µνµ1 . . .µn−1) and all discrete lattice momentaP,P ′ corresponding
to the same value oft = (P ′ − P)2. This procedure leads, in general, to an overdetermined set of equation
which we finally extract the GFFs[16]. We have taken care to ensure that our normalization leads exactly
x-moment of the transversity distributionδq(x) = h1(x) as defined in[28]. To make this as transparent as possi
we give an explicit example of one of the equations we use to extract〈x〉δ

(11)R2{34} = C
3pt2{34}
O (τ,P ′ = (m, �0),P = (m, �0))

C2pt(τsnk,P = (m, �0))
= 1

2κ

m

2
〈x〉δ,

where only theΓ̃1 (see Eq.(17)) projector contributes and 2{34} represents the operatorq̄σ 2{3 ↔
D 4}q. The factor

1/2κ accounts for the fact that the continuum quark fields are
√

2κ times the lattice quark fields, whereκ is the
hopping parameter entering the Wilson fermion action.

On the lattice the space–time symmetry is reduced to the hypercubic groupH(4), and the lattice operators ha
to be chosen such that they belong to irreducible multiplets underH(4). Furthermore, one would like to avo
mixing under renormalization as far as possible. In the case of the twist-2 operators in Eq.(3), or more precisely
their Euclidean counterparts, this presents no problem forn = 1 andn = 2, the only cases to be considered in t
Letter. Forn = 1 we have the 6-dimensional multiplet consisting of the operators

(12)q̄(0)iσµνq(0),

which is irreducible in the continuum as well as on the lattice (H(4) representationτ (6)
1 in the notation of[29]). The

16-dimensional space of continuum twist-2 operators withn = 2 decomposes into two 8-dimensional multipl
transforming according to the inequivalent representationsτ

(8)
1 andτ

(8)
2 . Typical members of these multiplets a

e.g.,

(13)q̄(0)
(
iσ12

↔
D 2 − iσ13

↔
D 3

)
q(0)

in the case ofτ (8)
1 , and

(14)q̄(0)
(
iσ12

↔
D 3 + iσ13

↔
D 2

)
q(0)

for τ
(8)
2 . All these operators are free of mixing problems, but one has to take into account that operators be

to inequivalent representations have different renormalization factors.
Obviously, for a successful computation of the GFFs, one would like to have as many different n

sink and source momenta and projection operatorsΓ̃ as possible in order to obtain a large number of in
pendent non-vanishing Dirac-traces in Eq.(9). This is particularly true for the tensor operators because
involve σµν and the number of tensor GFFs grows rapidly withn. Once we have extracted the GFFs from
lattice correlation functions, it is an easy exercise to reconstruct the corresponding moments of tenso
Hn

T (ξ, t) = ∫
dx xn−1HT (x, ξ, t) etc., using the polynomiality relations[26]

Hn=1
T (ξ, t) = AT 10(t) = gT (t), Hn=2

T (ξ, t) = AT 20(t),

H̃ n=1
T (ξ, t) = ÃT 10(t), H̃ n=2

T (ξ, t) = ÃT 20(t),

En=1
T (ξ, t) = BT 10(t), En=2

T (ξ, t) = BT 20(t),

(15)Ẽn=1
T (ξ, t) = B̃T 10(t) = 0, Ẽn=2

T (ξ, t) = (−2ξ)B̃T 21(t).
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Table 1
Lattice parameters: gauge couplingβ , sea quark hopping parameterκsea, lattice volume, number of trajectories, lattice spacing and pion m

β κsea Volume Ntraj a (fm) mπ (GeV)

5.20 0.13420 163 ×32 O(5000) 0.1145 1.007(2)

5.20 0.13500 163 ×32 O(8000) 0.0982 0.833(3)

5.20 0.13550 163 ×32 O(8000) 0.0926 0.619(3)

5.25 0.13460 163 ×32 O(5800) 0.0986 0.987(2)

5.25 0.13520 163 ×32 O(8000) 0.0909 0.829(3)

5.25 0.13575 243 ×48 O(5900) 0.0844 0.597(1)

5.29 0.13400 163 ×32 O(4000) 0.0970 1.173(2)

5.29 0.13500 163 ×32 O(5600) 0.0893 0.929(2)

5.29 0.13550 243 ×48 O(2000) 0.0839 0.769(2)

5.40 0.13500 243 ×48 O(3700) 0.0767 1.037(1)

5.40 0.13560 243 ×48 O(3500) 0.0732 0.842(2)

5.40 0.13610 243 ×48 O(3500) 0.0696 0.626(2)

These equations directly show that forn � 2, a dependence on the longitudinal momentum transferξ is only seen
for the GPDẼT , which is the only quark GPD odd inξ . In order to investigate theξ dependence of the generaliz
transversityHn

T (ξ, t), one has to consider at least then = 3 Mellin moment. Finally, we note that in the forwa
limit the momentsHn

T (ξ, t) reduce to the moments of the transversity distribution,Hn
T (ξ = 0, t = 0) = 〈xn−1〉δ .

3. Lattice results for moments of the generalized transversity

The simulations are done withnf = 2 flavors of dynamical non-perturbativelyO(a) improved Wilson fermions
and Wilson glue. For four different valuesβ = 5.20, 5.25, 5.29, 5.40 and three differentκ = κseavalues perβ we
have in collaboration with UKQCD generatedO(2000–8000) trajectories. Lattice spacings and spatial volum
vary between 0.07–0.11 fm and (1.4–2.0 fm)3, respectively. A summary of the parameter space spanned b
dynamical configurations can be found inTable 1. We set the scale via the force parameterr0. Instead of using the
conventional valuer0 = 0.5 fm we extrapolate recent results for the dimensionless nucleon massmNr0 obtained
by the CP-PACS, JLQCD and QCDSF-UKQCD Collaborations jointly to the physical pion mass, following[30].
This gives the valuer0 = 0.467 fm. A similar result was quoted in[31].

Correlation functions are calculated on configurations taken at a distance of 5–10 trajectories using 4–8
locations of the fermion source. We use binning to obtain an effective distance of 20 trajectories. The siz
bins has little effect on the error, which indicates auto-correlations are small. In this work, we simulate wit
choices of sink momenta�P ′ and polarization operators, namely,

(16)�P ′
0 = (0,0,0), �P ′

1 =
(

2π

LS

,0,0

)
, �P ′

2 =
(

0,
2π

LS

,0

)
,

whereLS is the spatial extent of the lattice, and

(17)Γ̃unpol= 1

2
(1+ γ4), Γ̃1 = 1

2
(1+ γ4)iγ5γ1, Γ̃2 = 1

2
(1+ γ4)iγ5γ2.

The choice of the two polarization projectors,Γ̃1 andΓ̃2 is particularly advantageous for the extraction of the ten
GFFs. The values of the momentum transfer�∆ = (2π/LS)�q used in this analysis are

(18)�q: (0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0)

and the vectors with permuted components. All lattice results below have been non-perturbatively renor
[32] and transformed to theMS scheme at a renormalization scale of 4 GeV2.
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Fig. 2. The tensor form factor together with a dipole fit using Eq.(19).

Fig. 3. The GFFAT 20 together with a dipole fit using Eq.(19).

In this Letter, we focus on the lowest two moments of the GPDHT . A broader analysis will, in particular, includ
moments of the linear combination 2H̃T (x, ξ, t) + ET (x, ξ, t) which have been shown to play a fundamental r
for the transverse spin structure of the nucleon[6]. Furthermore, in[7] it is claimed that thex-moment of this
linear combination gives the angular momentum carried by quarks with transverse spin in an unpolarized
in analogy to Ji’s sum rule[4]. In Figs. 2 and 3we show our results for the lowest two moments of the genera
transversity for up and down quarks in the nucleon as functions of the squared momentum transfert . The lattice
points and dipole curves are the result of a combined dipole fit together with linear continuum and pio
extrapolations of the form

(19)A
dipole,mπ ,a

T n0 (t) = A0
T n0(0) + α1m

2
π + α2a

2

(1− t/(m0
D + α3m2

π )2)2
,

with five fit parametersA0
T n0(0), m0

D andα1, . . . , α3. The curves show the fit function in the continuum lim

i.e., fora = 0, at the physical pion mass. Correspondingly, the differenceA
dipole,mlatt

π ,a

T n0 (t) − A
dipole,mphys

π ,a=0
T n0 (t) has

been subtracted from the individual data points before plotting. Although the extrapolation to the continuu
turns out to be almost flat, except forAu

20(0) for which α2 ≈ −4.2 ± 0.7 fm−2, we include thea2-dependence
because it reduces theχ2 of the fits considerably. To check our ansatz in Eq.(19), we show inFig. 4the (effective)
dipole massm0

D as a function of a cut for minimal and maximal values of the momentum transfer squaredt used
for the fit, tmin < t < tmax (keep in mind thatt < 0). The effective dipole mass is in both cases very stable
constant, except when−tmax becomes large since there are not enough data points used in the fit to determ
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Fig. 4. The effective dipole mass as a function of a cut int .

dipole mass accurately. Still, a more sophisticated approach is desired for future investigations. Addition
assumed linear dependence ona2 andm2

π eventually has to be replaced by a functional form obtained from,
chiral perturbation theory. The quark mass dependence of the first two moments of the (isovector) transve
already been investigated in[33,34].

The forward moments and dipole masses atmπ = m
phys
π anda = 0 are found to be

〈1〉uδ = Au
T 10(0) = 0.857± 0.013, mD = 1.732± 0.036 GeV,

〈1〉dδ = Ad
T 10(0) = −0.212± 0.005, mD = 1.741± 0.056 GeV,

〈x〉uδ = Au
T 20(0) = 0.268± 0.006, mD = 2.312± 0.071 GeV,

(20)〈x〉dδ = Ad
T 20(0) = −0.052± 0.002, mD = 2.448± 0.173 GeV,

and for the isovector and isosinglet combinations we obtain the dipole masses

AT 10: mu−d
D = 1.731± 0.034 GeV, mu+d

D = 1.713± 0.043 GeV,

(21)AT 20: mu−d
D = 2.318± 0.067 GeV, mu+d

D = 2.286± 0.083 GeV,

which agree with the up- and down-quark dipole masses within errors. Our result for the isovector tenso
〈1〉u−d

δ = 1.068± 0.016 is in agreement with results in[20] and 5% to 15% lower compared to lattice studies
[34–37]. However, our result for the isovectorx-moment〈x〉u−d

δ = 0.322± 0.006 is substantially lower than th
quoted value of〈x〉u−d

δ = 0.533± 0.083 (unquenched,κ = 0.1570, from[36]) and also the chirally extrapolate
value 〈x〉u−d

δ = 0.506± 0.089 [34].3 Since the previous works[34,36] used unimproved Wilson fermions wit
no continuum extrapolation together with perturbative renormalization of the operators, the numbers sh
compared with some care. Still, the discrepancy could indicate some problems with the normalization.

The explicit dependence of the tensor chargegT (t = 0) = 〈1〉δ and thex-moment of the transversity〈x〉δ on the
pion mass is shown inFig. 5, where all points have already been extrapolated to the continuum limit. The lin
extrapolated values atmphys

π agree within errors with the results from the global fit in Eq.(20). From the figures
we see that the tensor charge is approximately constant over the available range of pion masses, while,〈x〉dδ
clearly shows a dependence onmπ and drops by≈ 20% going fromm2

π = 1.4 GeV2 down tom2
π = 0.4 GeV2.

Interestingly, our results for the isovector dipole masses for the first two moments ofHT agree very well with
those obtained from fits to the moments of the polarized GPD,H̃ [38], which are shown to lie on a linear Reg
trajectory. It will be interesting to see if this trend continues for higher moments.

3 This holds also for up and down quarks separately.
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Fig. 5. The pion mass dependence of the lowest two moments of the transversity distribution.

Fig. 6. The ratio in Eq. (23) as a function ofm2
π for n = 0,1.
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Finally, in Fig. 6we investigate the Soffer bound[39]

(22)
∣∣δq(x)

∣∣ � 1

2

(
∆q(x) + q(x)

)
,

which holds exactly only for quark and antiquark distributions separately. Mellin moments of the distri
functions as defined in Section2 give, however, always sums/differences of moments of quark and antiq
distributions, e.g.,〈xn〉q + (−1)n+1〈xn〉q̄ . Taking Mellin moments of Eq.(22) and assuming that the antiqua
contributions are small, we expect that the ratio

(23)
2|〈xn〉δ|

(〈xn〉 + 〈xn〉∆)
, n = 0,1,

is smaller than one. InFig. 6, we show this ratio for up and down contributions as a function ofm2
π . As we can

clearly see from the figure, the ratio in Eq.(23) is smaller than one over the whole range of available pion ma
Taking into account what has been said above, this strongly indicates that the Soffer bound is satisfied in o
calculation of the lowest two moments of the unpolarized, polarized and transversity quark distributions.

4. Conclusions and outlook

We have computed the lowest moments of the quark tensor GPDHT in lattice QCD and studied the chir
and continuum limit of the forward moments and the dipole masses. The quark-line disconnected contr
have been neglected, but we have given reasons why they are expected to be small. Due to the relativ
pion masses in our simulations only a linear chiral extrapolation was possible. Assuming that contributio
antiquarks are small, our results indicate that the Soffer bound, relating the transversity, unpolarized and p
quark distributions, is satisfied in our calculation.

The results are promising and our study will soon be extended to include the tensor GPDsET , H̃T and ẼT .
Once a set of the lowest moments of all tensor GPDs is available, it will be extremely interesting to anal
transverse spin density of quarks in the nucleon, the corresponding positivity bounds and the relation to m
of twist-3 GPDs using sum-rules obtained from the equation of motion[6].
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