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PHYSICAL REVIEW D 70, 014502 ~2004!
Hybrid Monte Carlo algorithm with fat link fermion actions

Waseem Kamleh, Derek B. Leinweber, and Anthony G. Williams
Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide,

Adelaide, SA 5005, Australia
~Received 21 March 2004; published 23 July 2004!

The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advan-
tages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant
clover ~FLIC! fermions. The FLIC fermion formalism makes use of the APE blocking technique in combina-
tion with a projection of the blocked links back into the special unitary group. This reunitarization is often
performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable
with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algo-
rithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of
dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC
fermions are derived, and some initial simulation results are presented. The technique is more general however,
and is straightforwardly applicable to other smearing techniques or fat link actions.

DOI: 10.1103/PhysRevD.70.014502 PACS number~s!: 11.15.Ha, 12.38.Gc
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Recent advances in computing power and in lattice Q
~in particular, overlap fermions@1#! have allowed simula-
tions at sufficiently light quark masses to see that the beh
ior of quenched QCD can differ from the true theory bo
qualitatively and quantitatively in the chiral regime@2,3#. As
it is in the chiral regime where the difference from th
quenched approximation will be highlighted, we would lik
to simulate at light quark masses in dynamical QCD. This
an extremely computationally expensive endeavour. Idea
this would be done using overlap fermions, although la
scale dynamical overlap simulations challenge the limits
current computing power, to say the least.

Fat link irrelevant clover~FLIC! fermions have shown a
number of promising advantages over standard actions
cluding improved convergence properties@4# andO(a) im-
proved scaling without the need for nonperturbative tun
@5,6#. Furthermore, a reduced exceptional configurat
problem has allowed efficient access to the light quark m
regime in the quenched approximation@6#, where recent
studies have highlighted deviations from the true the
@2,3#. As interest shifts to focus on dynamical QCD, be
~truly! unquenched, or partially quenched, one might ho
that the excellent behavior at light quark mass displayed
FLIC fermions will carry over from the quenched theory
the unquenched one. This brings us to the issue of genera
dynamical gauge field configurations with the fermionic d
terminant being that of the FLIC action. Brief accounts
this work were presented last year@7,8#. Recently, an alter-
native proposal for another type of smearing scheme tha
differentiable has also appeared@9#.

I. HYBRID MONTE CARLO

The standard technique for simulating dynamical ferm
ons has for some time now been hybrid Monte Carlo~HMC!
@10#. It is exact, ergodic and isO(V5/4) ~using the standard
leapfrog integration scheme!, that is, it scales almost linearl
with the lattice volumeV ~for other integration schemes se
0556-2821/2004/70~1!/014502~9!/$22.50 70 0145
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Refs. @11,12#!. In order to introduce our notation and
framework for our technique, we briefly review the HM
algorithm for generating dynamical gauge field configu
tions.

We wish to generate an ensemble$Ui% of ~statistically
independent! representative gauge fields distributed acco
ing to the probability distribution

r~Ui !5e2Seff[Ui ] , ~1!

where the effective action for full QCD

Seff@U#5Sg@U#2 ln detD f@U#, ~2!

detD f5E Dc̄Dce2*d4xc̄(x)D fc(x) ~3!

is obtained from the standard action

S@U,c̄,c#5Sg@U#1Sf@U,c̄,c#, ~4!

Sf5E d4xc̄~x!D f@U#c~x!, ~5!

by integrating the fermionic degrees of freedomc̄,c of the
functional integral

^O&5
1

ZE DUDc̄DcO@U,c̄,c#e2S[U,c̄,c] . ~6!

For Wilson-like fermions in the physical region~away
from exceptional configurations! detD f is real and positive.
Hence ifM5D f

†D f , then detM5detD f
2 . For complex fields

f we have

1

detM 21
5E Df†Dfe2*d4xf†(x)M21f(x), ~7!

and as detM51/detM 21, we thus obtain the fermion dete
minant for two flavor QCD given in terms of an auxiliar
©2004 The American Physical Society02-1
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KAMLEH, LEINWEBER, AND WILLIAMS PHYSICAL REVIEW D 70, 014502 ~2004!
pseudofermion fieldf, so called because it is comple
~bosonic! rather than Grassmannian. For detD f real and posi-
tive it is an identity that

detD f5AdetD fdetD f
†5AdetM5detAM , ~8!

and hence to simulate an odd number of sea quark flavo
is possible to use detAM @13#.

For HMC, the four-dimensional quantum lattice theory
embedded in a classical five-dimensional system through
introduction of a fictitious~simulation! time, the~classical!
evolution parametert. The gauge fieldU is associated with
its ~fictitious! conjugate momentaP, and the~classical! five-
dimensional system is described by the Hamiltonian

H@U,P#5(
x,m

1

2
Tr Pm~x!21Seff@U#. ~9!

For Gaussian distributedP the expectation value of an ob
servable is unaffected by the 5D kinetic energy

^O&5
1

ZE DPDUO@U#e2H[U,P] , ~10!

Z5E DPDUe2H[U,P] . ~11!

Given U, a new gauge fieldU8 is generated by the updat
U→U8, which consists of the following.

~i! Refreshment. SampleP from a Gaussian ensemble
r(P)}e2(1/2)Tr P2

. Generate a pseudofermionic backgrou
field f according tor(f)}e2f†M21f.

~ii ! Molecular dynamics trajectory. Integrate Hamilton’s
equations of motion to deterministically evolve (U,P) along
a phase space trajectory to (U8,P8).

~iii ! Metropolis step. Accept or reject the new config
uration (P8,U8) with probability r(U→U8)
5min(1,e2DH),DH5H@U8#2H@U#.

The discretized equations of motion are derived by req
ing that the Hamiltonian be conserved along the traject
dH/dt50. The following discretized equations of motio
then approximately conserveH for small step sizesDt:

Um~x,t1Dt!5Um~x,t!exp„iDtPm~x,t!…, ~12!

Pm~x,t1Dt!5Pm~x,t!2Um~x,t!
dSeff

dUm~x,t!
. ~13!

In our implementation, we evaluate the matrix exponen
directly through diagonalization, rather than expanding it

FLIC fermions @4# are clover-improved fermions wher
the irrelevant operators are constructed using APE sme
links @14,15#. As with other efficient updating algorithms
HMC makes use of the variation of the action with respec
the links dS/dU in order that the proposed configuratio
have high acceptance rates. Previously, it has not been
how to perform HMC with fermion actions that make use
the APE blocking technique in combination with a projecti
of the blocked links back into the special unitary group. T
01450
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reunitarization is often performed using an iterative maxim
zation of a gauge invariant measure, and this choice of
uniterization is the source of the difficulty. The problem
that the iterative technique is not differentiable with resp
to the gauge field and thus it is not possible to calcul
dS/dU, which is necessary for the equations of moti
above. In the next section we consider an alternative te
nique and show that is does not suffer from this proble
allowing the simulation of dynamical fat link fermions wit
standard HMC~and its variants!.

II. SU„3… PROJECTION

The APE smeared linksUm
(n)(x) present in the FLIC fer-

mion action are constructed fromUm(x) by performingn
smearing sweeps, where in each sweep we first perform
APE blocking step

~14!

followed by a projection back into SU(3),Um
( j )(x)

5P@Vm
( j )(x)#. Frequently, the projection is performed usin

an algorithm which updatesU ( j ) iteratively in order to maxi-
mize the following gauge invariant measure:

Um
( j )~x!P$U8PSU~3!uRe Tr„U8Vm

( j )†~x!… is maximal%.
~15!

We refer to this projection technique as MaxReTr projectio
While this projection minimizes the local action@16#, as we
mentioned earlier it is not differentiable with respect
Um(x) and hence not suitable for use in HMC.

Now, given any matrixX, thenX†X is hermitian and may
be diagonalized. Then it is possible~for detXÞ0) to define a
matrix

W5X
1

AX†X
~16!

whose spectrum lies on the complex unit circle and is he
unitary @w(z)5z/z* z is the complex version of the sig
function#. Furthermore,W possesses the same gauge tra
formation properties asX. This is easily seen. LetXm(x)
transform as

Xm~x!→G~x!Xm~x!G†~x1em!, ~17!

then

Xm
† ~x!→G~x1em!Xm

† ~x!G†~x! ~18!

and hence

Xm
† ~x!Xm~x!→G~x1em!Xm

† ~x!Xm~x!G†~x1em!.
~19!
2-2
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HYBRID MONTE CARLO ALGORITHM WITH FAT LINK . . . PHYSICAL REVIEW D 70, 014502 ~2004!
Noting that @Xm
† (x)Xm(x)#21/2 has the same transformatio

properties asXm
† (x)Xm(x) it is then straightforward to se

that

Wm~x!→G~x!Wm~x!G†~x1em!, ~20!

as required.
Given the unitary matrixW, we can construct anothe

matrix

W85
1

A3 detW
W, ~21!

which is special unitary. Earlier work@17# has incorrectly
omitted the cube root. As there are three different comp
roots, we have aZ3 ambiguity which we break by choosin
the principal value of the cube root.1 In selecting the princi-
pal value, the projected matrices lie closest to those given
the MaxReTr method, and are hence smoother. The m
plaquette is closer to unity thus minimizing the action. W
refer to this technique for projectingXm(x) into the special
unitary group as unit circle projection.

The two methods produce smeared links that are diffe
but numerically close@according to the usual matrix norm
iAi5Almax(A

†A)]. Using the mean link as a measure of t
smoothness of the smeared gauge field, Table I indicates
the two methods presented here produce equally sm
gauge fields.

While numerically the two methods may be nea
equivalent, unit circle projection possesses a significant
vantage over MaxReTr projection. The matrix inverse squ
root function can be approximated by a rational polynom
~whose poles lie on the imaginary axis! @18,19#, W@X#
'Wk@X#,

1For complexz, the principal value of the cube root satisfie
2p/3,argA3 z,p/3. For purely realz, we chooseA3 z to be real.

TABLE I. The mean linku0 for a single configuration as a
function of number of APE smearing sweeps ata50.7, for the two
different projection methods. The boldface indicates significant d
its which match. The configuration is a dynamical gauge field w
DBW2 glue and FLIC sea fermions, atb58.0,k50.1280~a
50.17 fm,mq5200 MeV).

Sweep Unit Circle MaxReTr

0 0.866138301214314 0.866138301214314
1 0.960313394813806 0.960348747275940
2 0.980735000838119 0.980751346847750
3 0.988384926461589 0.988393707639555
4 0.992103013943516 0.992107844842705
5 0.994182852413813 0.994185532052157
6 0.995457365275018 0.995458835653863
7 0.996293668622924 0.996294454083006
8 0.996878305318083 0.996878710433084
01450
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Wk@X#[d0X~X†X1c2n!(
l 51

k
bl

X†X1cl

, ~22!

where the formula for the coefficientsd0 ,bl ,cl can be found
Ref. @19#. This approximation is differentiable in a matri
sense for allX for which the inverse square root can b
defined. This means that we can constructdS/dU for fer-
mion actions which involve unit circle projection, and hen
it is a reuniterization method which is compatible wi
HMC.

III. EQUATIONS OF MOTION

Having now defined the APE smearing prescription~with
projection! in a differentiable closed form, we proceed
derive the equations of motion necessary for the use of
HMC algorithm with FLIC fermions.

A. Mathematical preliminaries

The equations of motion are derived using multi-varia
calculus. To make the derivation simple and provide an
derstanding of how best to implement the equations e
ciently, we develop some appropriate mathematical to
Using index notation, we define a~minimal! set of tensor
operations~including differentiation! such that we can per
form the derivation in an index free language.

The derivative of a real-valued functionf @A# with respect
to the matrixA is a rank 2 type~1,1! tensor~distinguishing
contravariant and covariant indices!

F ] f

]AG
j

i

5
]

]Aj
i

f @A#. ~23!

The derivative of a matrix-valued functionM @A# with re-
spect to the matrixA is a rank 4 type~2,2! tensor

F]M

]A G
j l

i k

5
]

]Aj
k

M @A# i
l . ~24!

The set of type (m,n) tensorsT n
m forms a vector space. We

define the outer product̂ : T 1
13T 1

1→T 2
2 as

~A^ B! i
j
k
l5Ai

jB
k
l . ~25!

Noting carefully the index ordering, define the ‘‘direct
product% : T 1

13T 1
1→T 2

2 as

~A% B! i
j
k
l5Ak

jB
i
l . ~26!

Given a scalar functionf @B# and a matrix functionB@A# the
~scalar-matrix! chain rule states

] f

]A
5

] f

]B
!

]B

]A
, ~27!

where we define the contraction induced by the chain rule
the ~rank 2! star product!: T 1

13T 2
2→T 1

1 with

~A!T! i
l5Aj

kT
i
j
k
l . ~28!

-

2-3
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Given two matrix functionsM @B# and B@A#, the ~matrix-
matrix! chain rule states

]M

]A
5

]M

]B
!

]B

]A
, ~29!

where we define the contraction induced by this chain rule
the ~rank 4! star product!: T 2

23T 2
2→T 2

2 with

~S!T! i
j
k
l5Si

m
n

lT
m

j
k
n . ~30!

It is interesting to note that the star product induces an a
bra structure on the vector space of type~2,2! tensors, that is,
(T 2

2 ,1,!) is an algebra with multiplicative identityI ^ I .
We define juxtaposition forAPT 1

1 ,TPT 2
2 by the contrac-

tions

~AT! i
j
k
l5Ai

mTm
j
k
l , ~31!

~TA! i
j
k
l5Ti

j
k
mAm

l . ~32!

All our derivatives will be derived from the basic matr
differentiation rule. Given matricesM ,A,B,C then for M
5ABC we have

]M

]B
5A^ C. ~33!

An immediate consequence of this is that

]M

]M
5I ^ I . ~34!

The ~scalar-matrix! product rule is

]

]A
~ f M !5

] f

]A
% M1 f

]M

]A
. ~35!

The ~matrix-matrix! product rule is

]

]A
~XY!5X

]Y

]A
1

]X

]A
Y, ~36!
o

l-

01450
s

e-

which is easily shown to imply the identity

]X21

]A
52X21

]X

]A
X21. ~37!

In the following sections we will make use of the identity

A!~B% C!5~A•B!C, ~38!

where A•B5Ai
jB

j
i . Additionally, of particular numerical

importance is the identity

A!~B^ C!5BAC, ~39!

which has two major benefits. It allows us to evaluate t
matrix multiplications instead of an outer product~computa-
tional saving!, hence enabling us to implement the equatio
of motion without having to store any tensor fields~memory
saving!.

B. Standard derivatives

The equations of motion for FLIC fermions are derive
starting from the equations for the standard clover ferm
action @20,21#. We divide the effective action into its gaug
part and pseudofermionic part

Seff5Sg1Spf . ~40!

We reformulate some standard results in terms of the m
ematics of the previous section. We will adopt a more co
venient notation for quantities with a lattice site indexx,
using a subscriptUm,x rather thanUm(x). The matrix prod-
ucts of link variables are often denoted diagrammatically

For a plaquette plus rectangle improved gauge action

Sg5 (
x,m,n

Re Tr$b131@12Umn~x!#1b231@12Rmn
231~x!#

1b132@12Rmn
132~x!#%, ~41!

we have
~42!
where the filled circles indicate the pointx. The coefficients
bm3n5 1

3 bcm3n depend on the choice of gauge action. F
Lüscher-Weisz glue@22#, c1315 5

3 ,c2315c13252 1
12 . For

DBW2 glue@23–26#, we choose coefficients that are norma
ized such thatc13151.

The pseudofermionic action isSpf52(xfx
†hx , whereh

5(D†D)21f, hence by equations~36! and ~37! we have
r
]Spf

]Um,x
5f†~D†D !21S D†

]D

]Um,x
1

]D†

]Um,x
D D ~D†D !21f.

~43!

Settingx5Dh, we obtain
2-4
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]Spf

]Um,x
5x†

]D

]Um,x
h1h†

]D†

]Um,x
x. ~44!

Now, the FLIC action is explicitly given by

~Dflicc!x52
1

2 (
m

S Um,x
fl

u0
fl

2gm

Um,x

u0
D cx1m

1S Um,x
fl†

u0
fl

1gm

Um,x
†

u0
D cx2m

1S 41m2
1

4u0
fl4

smnFmn,x
cl D cx ~45!

and contains three terms, the Dirac term~constructed with
standard links!, the Wilson term and the clover term~using
fat links for Fmn,x

cl , and settingsmn5 1
2 @gm ,gn#). Hence we

may decompose the pseudofermionic derivative into th
terms also. The first comes from the Dirac term

]Spf
d

]Um,x
5

1

2u0
Trspin~hx

†
^ gmxx1m1xx

†
^ gmhx1m!, ~46!

while the Wilson and clover terms only explicit dependen
is on the smeared links
ft
th

ith

e

01450
e

e

]Spf
w

]Um,x
fl

52
1

2u0
fl

Trspin~hx
†

^ xx1m1xx
†

^ hx1m!, ~47!

]Spf
cl

]Um,x
fl

52
1

4u0
fl4

TrspinS hy
†snl

]Fnl,y

]Um,x
fl

xy

1xy
†snl

]Fnl,y

]Um,x
fl

hyD , ~48!

where the vector outer product defines a matrix (h ^ x†) i
j

5h ix j* . The one loop clover term is given byFnl,y

5 1
8 (Cnl,y2Cnl,y

† ), where

Cnl,y5U (1n)(1l),y1U (1l)(2n),y1U (2l)(1n),y

1U (2n)(2l),y , ~49!

andU (6n)(6l),y indicates the plaquette starting aty, oriented
in then2l plane, with the first~second! link in the direction
indicated by the first~second! index. When differentiating
with respect toUm,x

fl , any terms wherey lies further away
from x than x6n6l will be zero. Further, noting that the
derivative is zero unless eithern5m or l5m andnÞl we
can without loss of generality choosem5n. Lettingm5n be
in the horizontal direction andl be in the transverse~verti-
cal! direction, the contribution to the derivative due to th
clover term is
~50!
l

-

m-
in
orre-
where the filled circles indicate the pointx, and the pointy is
located at the start~end! of the diagrams that lie on the le
~right! side of the outer product, as can be deduced from
Kroneckerd ’s.

C. Smeared link derivatives

Now, having constructed the explicit derivatives ofSpf
with respect to the thin and fat links, the total derivative w
respect to the thin links is

dSpf

dUm,x
5

]Spf

]Um,x
1

]Spf

]Un,y
fl

!
dUn,y

fl

dUm,x
. ~51!

If we have performedn sweeps of APE smearing to form th
e

fat links, then the right-hand term is constructed throughn
applications of the chain rule

dS

dUm,x
( j 21)

5
]S

]Un,y
( j )

!
]Un,y

( j )

]Um,x
( j 21)

1
]S

]Un,y
( j )†

!
]Un,y

( j )†

]Um,x
( j 21)

, ~52!

until we arrive at dS/dUm,x
(0) . We note here that the partia

derivative with respect to a forward~backward! link only
picks up terms that contain the forward~backward! link, and
not its conjugate@that is,U andU† are considered indepen
dent with regard to partial differentiation, see Eqs.~14!,~66!,
~67!#. For the sake of both computational efficiency and si
plicity, this chain rule is itself composed of several cha
rules, and hence evaluated in several steps. Each step c
2-5
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sponds to a step in the APE smearing process, but we
through them in reverse order.

The final step in the APE smearing process~with unit
circle projection! is

Um,x
(n) 5

1

detWm,x
(n) 21/3

Wm,x
(n) . ~53!

Therefore the first chain rule corresponds to this step

]S

]Wm,x
5

]S

]Um,x
(n)

!
]Um,x

(n)

]Wm,x

5
]S

]Um,x
(n)

!S 2
1

3
detWm,x

24/3

3
] detWm,x

]Wm,x
% Wm,x1detWm,x

21/3I ^ I D , ~54!

where

detA5e i jkA1
iA

2
jAk

3 ~55!

and hence denoting the permutationsp i5( i mod 3)11,p i
2

5pp i
,

] detA

]Ai
j

5e j lmAp i
lA

p i
2

m . ~56!

There are several chain rules that correspond to

Wm,x
(n) 5Vm,x

(n) ~Vm,x
(n)†Vm,x

(n) !21/2. ~57!

For the first, we defineHm,x5Vm,x
† Vm,x . Then

]S

]Hm,x
5

]S

]Wm,x
!

]Wm,x

]Hm,x
. ~58!

Using

Wm,x'd0Vm,x~Hm,x1c0!(
l 51

k
bl

Hm,x1cl
, ~59!
01450
gowe have

]Wm,x

]Hm,x
5d0Vm,xS I ^ (

l 51

k
bl

Hm,x1cl
2~Hm,x1c0!

3(
l 51

k

bl

1

Hm,x1cl
^

1

Hm,x1cl
D . ~60!

We can then construct

]S

]Vm,x
5

]S

]Wm,x
!

]Wm,x

]Vm,x
1

]S

]Hm,x
!

]Hm,x

]Vm,x

5
]S

]Wm,x
!~ I ^ Hm,x

21/2!1
]S

]Hm,x
!~Vm,x

†
^ I ! ~61!

and also

]S

]Vm,x
†

5
]S

]Wm,x
†

!
]Wm,x

†

]Vm,x
†

1
]S

]Hm,x
!

]Hm,x

]Vm,x
†

5
]S

]Wm,x
†

! S H
m,x

2
1
2 ^ I D1

]S

]Hm,x
!~ I ^ Vm,x!.

~62!

Last, we make use of the chain rule

]S

]Um,x
(n21)

5
]S

]Vn,y
!

]Vn,y

]Um,x
(n21)

1
]S

]Vn,y
†

!
]Vn,y

†

]Um,x
(n21)

, ~63!

where

~64!

~65!

andy is indicated by the filled circle.
It is then straightforward to show that
~66!

and

~67!

where in these diagrams the filled circle indicates the pointy. Hence,
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~68!
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where nowx is indicated by the filled circle.
Having constructed the total derivative of the action w

respect toUm,x , we can calculate the variation ofS with
respect to the gauge field~noting U†5U21),

dS

dU
5

dS

dU
1

dS

dU†
!

]U†

]U
5

dS

dU
2U†

dS

dU†
U†, ~69!

and hence the necessary equations of motion~12! and~13!. It
is numerically efficient to make use of the fact that

dS

dU†
5S dS

dU D †

. ~70!

IV. SIMULATION RESULTS

We have implemented the equations above within a s
dard two-flavor HMC, with multiple time scales. The sta
dard leapfrog integration scheme is used. The BiCGStab
gorithm is used for matrix inversion. Expensiv
pseudofermion momenta updates are performed at a la
step sizeDt5Dtpf and the cheaper gauge momenta upda
are performed more often,Dtg5(1/n) Dtpf , for some inte-
ger n. Molecular dynamics trajectories are of unit leng
nmdDt51. In particular, we have implemented a modifi
version of the Ritz algorithm to diagonalise arrays of 333
matrices in parallel. This routine is used in the SU~3! projec-
tion step, and is also used to calculate the matrix expon
tials that are needed in other parts of the algorithm, avoid
the need to use polynomial approximations to the expon
tial. This means that the accuracy of the exponential in
~12! does not depend upon the step sizeDt.

An eighth order Zolotarev approximation to the inver
square root is used to approximateWm,x in unit circle pro-
jection. We find that the spectral range at this order is am
In smooth gauge backgrounds it is easily shown that u
circle projection is well defined, that is, detVm,x

† Vm,x.0.
If we assume a smoothness conditioni12Umn,xi

<e ;x,m,n, then we have a lower bound

Vm,x
† Vm,x>122ae2a2e2.

To prove this, we note that APE blocking may be written
terms of the plaquette field
01450
n-

l-

er
s

,

n-
g
n-
.

e.
it

Vm,x5Um,xS 12
a

6 (
6nÞm

~12Umn,x
† ! D . ~71!

DefineZ5(6nÞm(12Umn,x
† ), then

Vm,x
† Vm,x512

a

6
~Z1Z†!1

a2

36
Z†Z. ~72!

As iZi<6e, we then have

lmin~Vm,x
† Vm,x!>122ae2a2e2, ~73!

which is strictly positive for small enoughe.
While the smeared link equations of motions are compl

our implementation evaluates them efficiently due to the
timizations that can be performed through the calculus
constructed earlier. At large sea quark masses the cod
ready spends over 90% of its time in the BiCGStab invers
required to calculateh5(D†D)21f, and as the quark mas
decreases this fraction increases. So as is standard, the
eration of dynamical gauge fields is dominated by the ma
inversion.

Simulation results are presented in Table II. Simulatio
for both Lus̈cher-Weisz and DBW2 glue are performed,
different b andk values to conduct an initial exploration o
the parameter space. Pion masses and lattice spacing
obtained from 20 configurations for eachb andk given. We
observe that to obtain similar lattice spacings to o
quenched lattices, we must work at smallerb values for our
unquenched gauge fields. This is in accord with the expec
renormalization of the strong coupling constant confirmed
previous dynamical fermion studies. As a result the me
link u0 is significantly further from unity for unquenche
lattices than quenched lattices, although the effect is m
pronounced for the Lus¨cher-Weisz glue than the DBW2 glue
Our results also confirm the well known fact that asb and
the quark mass are decreased one must reduce the ste
Dt in order to maintain a constant acceptance rate. Altho
an exact comparison is difficult, for a given step size a
quark mass, our acceptance rates obtained compare well
standard simulations~see, for example, Ref.@27#!.

It is a simple exercise to apply our results to gener
gauge fields with dynamical FLIC overlap quarks, althou
this would be extremely computationally intensive. T
availability of HMC as a simulation algorithm for dynamica
FLIC fermions is significant, as it scales almost linearly w
the lattice volumeV, whereas previously there were on
2-7
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TABLE II. Simulation parameters and results for various dynamical simulations. The parameters are the gauge coupling,
parameter, gauge action, step size, and psuedofermion to gauge step size ratio. The results given are the mean link, lattice spa~in fm,
obtained fromr 0 via the static quark potential! and pion mass~in GeV!. Two degenerate flavors of FLIC sea quarks are used, with ei
Lüscher-Weisz~IMP! glue or DBW2 glue. These results are obtained from 20 123324 configurations. Simulations are done using multip
time step HMC with trajectories of unit length.

b k Sgauge Dt Dtpf /Dtg racc u0 a mp

3.6 0.1347 IMP 0.0143 2 0.55 0.8226 0.247~9! 0.702
3.7 0.1340 IMP 0.0147 2 0.64 0.8338 0.218~4! 0.680
3.8 0.1332 IMP 0.0151 2 0.65 0.8443 0.180~2! 0.738
3.9 0.1310 IMP 0.0200 2 0.66 0.8534 0.153~2! 0.834
3.9 0.1325 IMP 0.0156 2 0.55 0.8540 0.146~2! 0.702
4.0 0.1301 IMP 0.0200 2 0.66 0.8614 0.132~2! 0.906
4.0 0.1318 IMP 0.0161 2 0.64 0.8625 0.121~2! 0.799
4.1 0.1283 IMP 0.0200 2 0.75 0.8680 0.114~1! 1.088
4.1 0.1305 IMP 0.0166 2 0.70 0.8685 0.104~1! 0.668
4.2 0.1246 IMP 0.0200 2 0.86 0.8736 0.107~1! 1.496
4.2 0.1266 IMP 0.0200 2 0.80 0.8738 0.097~1! 1.346
4.3 0.1253 IMP 0.0200 2 0.83 0.8788 0.091~1! 1.574
4.4 0.1255 IMP 0.0200 2 0.88 0.8836 0.086~1! 1.411
4.5 0.1253 IMP 0.0200 2 0.83 0.8878 0.075~1! 1.657
4.6 0.1254 IMP 0.0200 2 0.84 0.8916 0.072~1! 1.617
7.0 0.1315 DBW2 0.0152 2 0.74 0.8344 0.252~6! 0.780
7.0 0.1345 DBW2 0.0156 2 0.68 0.8352 0.233~8! 0.673
7.5 0.1310 DBW2 0.0156 2 0.79 0.8516 0.206~3! 0.779
8.0 0.1305 DBW2 0.0161 2 0.73 0.8663 0.168~2! 0.764
8.5 0.1300 DBW2 0.0166 3 0.71 0.8774 0.134~1! 0.782
9.0 0.1224 DBW2 0.0200 2 0.79 0.8858 0.137~3! 1.412
9.0 0.1296 DBW2 0.0200 2 0.78 0.8865 0.115~1! 0.753
9.5 0.1228 DBW2 0.0200 2 0.82 0.8934 0.109~2! 1.576
10.0 0.1234 DBW2 0.0200 2 0.83 0.9000 0.099~2! 1.502
10.5 0.1236 DBW2 0.0200 2 0.79 0.9056 0.093~1! 1.567
11.0 0.1239 DBW2 0.0200 2 0.81 0.9110 0.086~1! 1.473
e
d
p

g

for
the

er-
O(V2) alternatives@28#. Furthermore, the method we hav
described is general and can be straightforwardly applie
any fermion action with reuniterization, including overla
fermions with a fat link kernel@29–32#, or other types of
fatlink actions @33# that may involve alternative smearin
techniques@34#. Additionally, any of the variants of HMC
can be also be used, in particular polynomial HMC@35# or
rational HMC @36# which allow for the simulation of odd
numbers of sea quark flavors.
g,

. B

-
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