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Hybrid Monte Carlo algorithm with fat link fermion actions

Waseem Kamleh, Derek B. Leinweber, and Anthony G. Williams
Special Research Centre for the Subatomic Structure of Matter and Department of Physics, University of Adelaide,
Adelaide, SA 5005, Australia
(Received 21 March 2004; published 23 July 2004

The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advan-
tages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant
clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combina-
tion with a projection of the blocked links back into the special unitary group. This reunitarization is often
performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable
with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algo-
rithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of
dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC
fermions are derived, and some initial simulation results are presented. The technique is more general however,
and is straightforwardly applicable to other smearing techniques or fat link actions.

DOI: 10.1103/PhysRevD.70.014502 PACS nuniberll.15.Ha, 12.38.Gc

Recent advances in computing power and in lattice QCIORefs. [11,12)). In order to introduce our notation and a
(in particular, overlap fermion§l]) have allowed simula- framework for our technique, we briefly review the HMC
tions at sufficiently light quark masses to see that the behawlgorithm for generating dynamical gauge field configura-
ior of quenched QCD can differ from the true theory bothtions.
qualitatively and quantitatively in the chiral regifi 3]. As We wish to generate an ensemHld;} of (statistically
it is in the chiral regime where the difference from the independentrepresentative gauge fields distributed accord-
guenched approximation will be highlighted, we would like ing to the probability distribution
to simulate at light quark masses in dynamical QCD. This is
an extremely computationally expensive endeavour. Ideally, p(U;)=e SerlVil, 1)
this would be done using overlap fermions, although large . .
scale dynamical overlap simulations challenge the limits Oiwhere the effective action for full QCD
current computing power, to say the least. S.{U]=S U]-IndetD{ U], )

Fat link irrelevant cloverFLIC) fermions have shown a 9
number of promising advantages over standard actions, in- _ . —
cluding improved convergence propert{@d and O(a) im- detDFf DyDype 1V IDH) 3
proved scaling without the need for nonperturbative tuning
[5,6]. Furthermore, a reduced exceptional configurations obtained from the standard action
problem has allowed efficient access to the light quark mass . .
regime in the quenched approximati¢f], where recent U, ¢, 4]1=Sf U+ S[U, 4,41, (4
studies have highlighted deviations from the true theory
[2,3]. As interest shifts to focus on dynamical QCD, be it 4.

(truly) unquenched, or partially quenched, one might hope Sf:j d™xg(x)DAU ¢ (x), ®)

that the excellent behavior at light quark mass displayed by o

FLIC fermions will carry over from the quenched theory to by integrating the fermionic degrees of freedamy of the

the unquenched one. This brings us to the issue of generatirfgnctional integral

dynamical gauge field configurations with the fermionic de-

terminant being that of the FLIC action. Brief accounts of

this work were presented last ydar,8]. Recently, an alter-

native proposal for another type of smearing scheme that is

differentiable has also appearfdl. For Wilson-like fermions in the physical regioaway
from exceptional configurationgletD; is real and positive.
Hence ifM =D{Ds, then deM =detD?. For complex fields

(0)= 5[ PUDEDYOLL Tt R @

I. HYBRID MONTE CARLO ¢ we have
The standard technique for simulating dynamical fermi- 1 ZJ D(f)TD(f)e*N“X‘bT(X)MilQS(X) @
ons has for some time now been hybrid Monte CaHMC) detM 1 '

[10]. It is exact, ergodic and i©(V®?) (using the standard
leapfrog integration schemehat is, it scales almost linearly and as del =1/detM ~ 1, we thus obtain the fermion deter-
with the lattice volumeV (for other integration schemes see minant for two flavor QCD given in terms of an auxiliary
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pseudofermion field¢, so called because it is complex reunitarization is often performed using an iterative maximi-
(bosonig rather than Grassmannian. For Betreal and posi-  zation of a gauge invariant measure, and this choice of re-

tive it is an identity that uniterization is the source of the difficulty. The problem is
that the iterative technique is not differentiable with respect
detD;= \/detDdetD] = \/detM = detyM, (8)  to the gauge field and thus it is not possible to calculate

8S/8U, which is necessary for the equations of motion
and hence to simulate an odd number of sea quark flavors, #ove. In the next section we consider an alternative tech-
is possible to use d¢M [13]. nique and show that is does not suffer from this problem,
For HMC, the four-dimensional quantum lattice theory is allowing the simulation of dynamical fat link fermions with
embedded in a classical five-dimensional system through thetandard HMQand its variants
introduction of a fictitious(simulatior) time, the(classical)
evolution parameter. The gauge fieldJ is associated with

its (fictitious) conjugate momentR, and the(classical five- Il SU(3) PROJECTION

dimensional system is described by the Hamiltonian The APE smeared IinkEJEL”)(x) present in the FLIC fer-
1 mion action are constructed frotd ,(x) by performingn
H[U,P]zE zTr Pﬂ(x)2+8eﬁ[U]. (9) smearing sweeps, where in each sweep we first perform an
Xt APE blocking step

For Gaussian distribute® the expectation value of an ob- V(’)(x)[U(/ D]=(1—a) et E 1—1 l_j

servable is unaffected by the 5D kinetic energy 6 =,

1 (14)
<(9>=Z,f DPDUO[U]e MY-PI, (10)
followed by a projection back intoSU(3),U(x)
—P[V(’)(x)] Frequently, the projection is performed using
Z:J DPDUe HY.PL, (1) an algorithm which updates®) iteratively in order to maxi-
mize the following gauge invariant measure:
Given U, a new gauge field)’ is generated by the update

U—U’, which consists of the following. UD(x) e{U’ e SU3)|Re THU'VIT(x)) is maxima}.

(i) RefreshmentSampleP from a Gaussian ensemble, (15
p(P)ce”WATP?  Generate a pseudofermionic background _ o . o
field ¢ according t0p(¢)oce*¢TM_l¢’ We refer to this projection technique as MaxReTr projection.

While this projection minimizes the local acti¢h6], as we
mentioned earlier it is not differentiable with respect to
U ,(x) and hence not suitable for use in HMC.

Now given any matrixX, thenX"X is hermitian and may
be diagonalized. Then it is possilifer detX+# 0) to define a
matrix

(ii) Molecular dynamics trajectorylntegrate Hamilton’s
equations of motion to deterministically evolvd (P) along
a phase space trajectory to (,P’).

(iii) Metropolis step Accept or reject the new config-
uration P',U" with probability  p(U—U")
=min(le 2", AH=H[U']-H[U].

The discretized equations of motion are derived by requir-
ing that the Hamiltonian be conserved along the trajectory W= X 1 (16)
dH/dr=0. The following discretized equations of motion XX
then approximately consenié for small step sized 7:

whose spectrum lies on the complex unit circle and is hence
unitary [w(z)=2z/z*z is the complex version of the sign
function]. Furthermore W possesses the same gauge trans-
) (13)  formation properties a¥X. This is easily seen. LeX,(x)

0U (%, 7) transform as

U, (X, 7+A7)=U (X, 7)exp(iA TP (X, 7)), (12

Seff
P.(X,7+A7)=P,(X,7)=U ,(X,7)

In our implementation, we evaluate the matrix exponential
directly through diagonalization, rather than expanding it.

FLIC fermions[4] are clover-improved fermions where
the irrelevant operators are constructed using APE smearéBen
links [14,15. As with other efficient updating algorithms, + + N
HMC makes use of the variation of the action with respect to X ()= G(x+e,)X,(X)G(x) (18)
the links 6S/6U in order that the proposed configurations
have high acceptance rates. Previously, it has not been cleafd hence
how to perform HMC with fermion actions that make use of
the APE blocking technique in combination with a projection XL(X)XM(X)—>G(X+ eM)XL(X)X#(X)GT(X'i‘ €,)-
of the blocked links back into the special unitary group. This (19

X, (X)—=G(X)X,(X)GT(x+e,), (17

014502-2
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TABLE I. The mean linku, for a single configuration as a
function of number of APE smearing sweepsvat 0.7, for the two
different projection methods. The boldface indicates significant dig-
its which match. The configuration is a dynamical gauge field with
DBW2 glue and FLIC sea fermions, g8=8.0,x=0.1280(a

=0.17 fm,my=200 MeV).

PHYSICAL REVIEW D 70, 014502 (2004

k b|

W, [ X]=dX(XTX+c _
W[ X]=doX( 2n)|=1XTx+C|

(22)

where the formula for the coefficienty,b; ,c, can be found
Ref. [19]. This approximation is differentiable in a matrix
sense for allX for which the inverse square root can be

Sweep Unit Circle MaxReTr defined. This means that we can constrd® sU for fer-
mion actions which involve unit circle projection, and hence

0 0.866138301214314 0.866138301214314 i s 5 reuniterization method which is compatible with

1 0.96033394813806  0.960318747275940  y\iC.

2 0.980B5000838119 0.98051346847750

3 0.98884926461589 0.98833707639555 IIl. EQUATIONS OF MOTION

4 0.99213013943516 0.99210844842705

5 0.99412852413813 0.99418532052157 Having now defined the APE smearing prescriptiaith

6 0.99545365275018 0.9954%8835653863 projection in a differentiable closed form, we proceed to

7 0.9962%B668622924 0.99629454083006 derive the equations of motion necessary for the use of the

8 0.99687805318083 0.99687910433084 HMC algorithm with FLIC fermions.

A. Mathematical preliminaries

H T —-1/2 H . . . . . .
Noting that[ X, (x)X,()] °* has the same transformation  The equations of motion are derived using multi-variate
properties asX,(x)X,(x) it is then straightforward to see calculus. To make the derivation simple and provide an un-

that derstanding of how best to implement the equations effi-
ciently, we develop some appropriate mathematical tools.
WM(X)HG(X)WM(X)GT(X-F €u) (20 Using index notation, we define @inimal) set of tensor
operations(including differentiation such that we can per-
as required. form the derivation in an index free language.
Given the unitary matrixv\/, we can construct another The derivative of a real-valued funCUdﬁA] with I‘eSpeCt
matrix to the matrixA is a rank 2 typg1,1) tensor(distinguishing
contravariant and covariant indiges
1 i
W=_———W, 21 oty _ o
ot (21) A j_aA"i f[A]. (23)

which is special unitary. Earlier workl7] has incorrectly The derivative of a matrix-valued functioM[A] with re-
omitted the cube root. As there are three different complexspect to the matrid is a rank 4 type2,2) tensor

roots, we have &5 ambiguity which we break by choosing ,
the principal value of the cube robin selecting the princi- [&M LK d

| I=mk|\/|[A]i,. (24)

pal value, the projected matrices lie closest to those given by OA
the MaxReTr method, and are hence smoother. The mean
plaguette is closer to unity thus minimizing the action. WeThe set of type if1,n) tensors7"' forms a vector space. We

refer to this technique for projecting, (x) into the special  define the outer produch: 72X 7+—72 as
unitary group as unit circle projection.

The two methods produce smeared links that are different
but numerically closdaccording to the usual matrix norm ) _ _ ) )
Al = VA mad ATA)]. Using the mean link as a measure of the Noting carefiJIIy 1the |2ndex ordering, define the “direct”
smoothness of the smeared gauge field, Table | indicates thBfoduct®: 71X 7T7—75 as
the two methods presented here produce equally smooth i i
gauge fields. P P A (A®B)'§=A"B. (26)

Wh|le num_enqally the_ two methods may be_ ! nearly Given a scalar functiofif B] and a matrix functioB[ A] the
equivalent, unit circle projection possesses a significant ad(scalar-matri)( chain rule states
vantage over MaxReTr projection. The matrix inverse square
root function can be approximated by a rational polynomial
(whose poles lie on the imaginary axi§l18,19, W[ X]
~Wy[X],

(A®B)' K =A"BY . (25)

Jf  of oB 2
A ﬁ_B*(?—A (27)
where we define the contraction induced by the chain rule as
the (rank 2 star productx: 77X 75— 77 with
YFor complexz, the principal value of the cube root satisfies . o
— wI3<argd/z< w/3. For purely reak, we choos&/z to be real. (AxT) | =A kT'jk| . (28)

014502-3
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Given two matrix functionaM[B] and B[A], the (matrix- ~ which is easily shown to imply the identity
matrix) chain rule states
ox~ 1 aX

_ w1971
A X &AX . (37)

IM &M c?B

A 9B &A @9

In the following sections we will make use of the identity
where we define the contraction induced by this chain rule as
the (rank 4 star productx: 75X 75— 75 with Ax(Ba&C)=(A-B)C, (39

(ST, =S T™ . (30 where A-B=A!;Bl;. Additionally, of particular numerical

importance is the |dent|ty
It is interesting to note that the star product induces an alge-

bra structure on the vector space of tyge?) tensors, that is, Ax(B®C)=BAC (39)
(75,+,%) is an algebra with multiplicative identity 1. ’

. ” 1 2 . . .
We define juxtaposition foAe 77, T e 75 by the contrac-  \yhich has two major benefits. It allows us to evaluate two

tions matrix multiplications instead of an outer prodiicomputa-
- tional saving, hence enabling us to implement the equations
(AT) K =ATTmk, (3D of motion without having to store any tensor fielssemory
saving.
(TAS =T A" . (32)

All our derivatives will be derived from the basic matrix B. Standard derivatives

differentiation rule. Given matriceM,A,B,C then for M The equations of motion for FLIC fermions are derived
=ABC we have starting from the equations for the standard clover fermion
action[20,21). We divide the effective action into its gauge
M part and pseudofermionic part
B —=A®C. (33
Seff: Sg+ Spf . (40)

An immediate consequence of this is that _
We reformulate some standard results in terms of the math-

M ematics of the previous section. We will adopt a more con-
—=I®l. (34  venient notation for quantities with a lattice site index

M using a subscript , , rather tharlJ ,(x). The matrix prod-

ucts of link variables are often denoted diagrammatically.

The (scalar-matrix product rule is . ;
For a plaquette plus rectangle improved gauge action

of oM
(fM) —@M+f—. (35
i S= 2 ReT{Brall-U,u00]+ Bzl 1- R0
m<v
The (matrix-matriX product rule is 1o
+B1x2l1-R,, 5 (X1}, (41)
i XY —Xﬁ+%Y 36
oA )= aA oA (36) we have

e (R R (N | (e ) N

where the filled circles indicate the point The coefficients ISyt R L Df fe 1
Bmxn=13BCmxn depend on the choice of gauge a actlon For 50, —¢ (D'D)” ( 0 T a0 D)(D D) "¢.
Luscher-Weisz glug22], C1x1=3,Cox1=Cixo= . For o o (43

DBW?2 glue[23—-26, we choose coefficients that are normal-
ized such that,,;=1.
The pseudofermionic action B,= —EX¢X 7y, Wheren
=(D'D) !¢, hence by equation86) and(37) we have Settingy=D 7, we obtain

014502-4
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oDt

Sy D
+ g .
n+tn 0U,L,XX

— T
U, XU,

(44)

Now, the FLIC action is explicitly given by

fl
wX
ug

U,x

"

o,wF,JVx> g (45

(Driicth)x=—

1
22

fit
UM X

o
Ug

¢X+p,

UT

X
+ + 'yM—uO

4+m— 4uf'4

0

and contains three terms, the Dirac tefoonstructed with
standard links the Wilson term and the clover tertasing

fat links for F$, ,, and settingr,,,= 5[ 7,,,7,]). Hence we

may decompose the pseudofermionic derivative into thred!

terms also. The first comes from the Dirac term

ISy

Ju

1
= 2_uOTrspin( MN® Y Xk u T Xa® VuThs u)s (46)

X

PHYSICAL REVIEW D 70, 014502 (2004

ISyt
= = el Tx® Xt uF Xx® 71 ), (47)
Ut 2uf
IS5t 1 IF pry
= o Vspinl 740 X
ault o auft P YT gt
JF
t vy
+ XyO-V}\ fl 77y) ' (48)
o"UM’X

where the vector outer product defines a matr17®(xf)'
—77XJ . The one loop clover term is given b?my
S(Cv)\ Wy V}\ y) where

Cony=UEnenyTUEneEny Ty

U0y (49)

andU . ,)(+y),y indicates the plaquette startingyatoriented

in the v—\ plane, with the firs{secondl link in the direction
indicated by the first(secon()l index. When differentiating
with respect toU" uxo any terms wherg lies further away
from x thanx=vx\ will be zero. Further, noting that the
derivative is zero unless either=u or A\=u andv#\ we
can without loss of generality chooge=v. Lettingu= v be
in the horizontal direction anl be in the transverséverti-

while the Wilson and clover terms only explicit dependencecal) direction, the contribution to the derivative due to the

is on the smeared links

aFV)\,y
arrfl
U, .

[ Tere. [

where the filled circles indicate the pointand the poiny is
located at the stafend of the diagrams that lie on the left

15;§+M+A_L ® I 5Vx+,u AT L_I

clover term is

- [®H5W+ ‘_15;’*;“—1@ -, ® 55\
B

®ISH, ,

(50

fat links, then the right-hand term is constructed throumgh
applications of the chain rule

(right) side of the outer product, as can be deduced from the

Kroneckeréd's.

C. Smeared link derivatives

Now, having constructed the explicit derivatives
with respect to the thin and fat links, the total derivative WI'[h
respect to the thin links is

dSy Sy »
du &U

fl
av,,,
*du

aspf
Ul

(51)

X X

If we have performedh sweeps of APE smearing to form the

ds s 0, ss U
Ul oUW "G U0 U 52

until we arrive at &/dU{’;. We note here that the partial
derivative with respect to a forwartbackward link only

picks up terms that contain the forwafiohckward link, and

not its conjugatdthat is,U andU" are considered indepen-
dent with regard to partial differentiation, see E(fs1),(66),

(67)]. For the sake of both computational efficiency and sim-
plicity, this chain rule is itself composed of several chain
rules, and hence evaluated in several steps. Each step corre-

014502-5
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sponds to a step in the APE smearing process, but we gwae have

through them in reverse order.
The final step in the APE smearing procdsgth unit
circle projection is

1
m—__ =
U,u,X_ dethE:)x _1/3W,u,X . (53)
Therefore the first chain rule corresponds to this step

JS JS r?U(”)
W, x U, aw

= *| — —detw 43
aup, 3 -
Jdetw,, Y
XW’“:@WM’X_FdetWM’];(gI@I , (59
where
detA=ekAL A% A (55)

and hence denoting the permutatiofis= (i mod 3)+ 1,7-ri2
= 7T’7Ti’
d detA

oA,

= €mATIAT . (56)

There are several chain rules that correspond to
_ t -
W=V (VI 22 (57)
For the first, we definél, .=V, ,V, .. Then

S s IW

X
= * . (58)
IH,x W,y dH, »
Using
Kb
~olov“<H,lx+co>EH—+CI (59
v, o
Y - - &
U (1-alel 6AZVI i o
and

VT
>t E I® f— s

é'Uif;l) 6 &>

k

oW
X
T =00V DY —H o~ (Hiuxtco)
k
1 1
X b ® 60
21 "Hoxtc H,xtc (69
We can then construct
S 4SS IW,, IS dH,,
N,x aWM* IV, x &Hﬂ,x*ﬂVM,x
= *(I®H’1’2)+—S*(VT ®l) (61)
IW,, wX T GH
and also
S S aw* IS IH,x
= *
N W avT MHux V!,
95 (_%I)+ S IV, %)
= * ® *(l® .
(}WL,X X ﬁH[.L,X X
(62)
Last, we make use of the chain rule
S 1S Ny S N, 63
= *
(n—1) (n 1) T (n—-1)’
Jull, Ny aUl vy, U
where
o
v”:(l_a>+gzﬂ+ ,
AFv l_j (64)
=(1-a)+— I +i 90
=(1~a) ; i (65)
andy is indicated by the filled circle.
It is then straightforward to show that
® ;H+1®41 S+, eI, _,
l T I_, (66)
¥V, X— V ®15vx+}\’
(67)

where in these diagrams the filled circle indicates the pypittence,

014502-6
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a8 a8 o a8 a8
———=(-a) +—E,—*I®l+,—* ®
aU,E:’,x ) dv,u,,x 6 v#Ep dv,u,,x*v dv,u,x+v l T
a8 a8 4 4
A S
+ +
&V,,,x*]® _1 *[® r_ +dVT—* I, (68)

*
9V B &I+
d vxtpu—v L &VIL,JC—V ) X+ J
[

where nowx is indicated by the filled circle. @

Having constructed the total derivative of the action with Vux= U,u,x( -3 > (1—ULV,X))- (71)
respect toU, ,, we can calculate the variation & with ”
respect to the gauge fieldotingUT=U"1),

Definez=%. . ,(1- ULV'X), then

8S dS dS ou' ds ds
= = ur'—ut, (69

5U_du guttau du Y gt Vi V= 1= 5 (242N + 5212, (72)

and hence the necessary equations of mdti@and(13). It  As ||Z|<6e, we then have
is numerically efficient to make use of the fact that

Min(V LV, 0 =1— 20— a?e?, (73

(700 which is strictly positive for small enougé
While the smeared link equations of motions are complex,
our implementation evaluates them efficiently due to the op-
timizations that can be performed through the calculus we
IV. SIMULATION RESULTS constructed earlier. At large sea quark masses the code al-
We have imp|emented the equations above W|th|n a Starf.eady SpendS over 90% Of |tS t|me in the B|CGStab inVerSion

dard two-flavor HMC, with multiple time scales. The stan- required to calculatey=(D'D) ¢, and as the quark mass
dard leapfrog integration scheme is used. The BiCGStab afecreases this fraction increases. So as is standard, the gen-
gorithm is used for matrix inversion. Expensive gratior_l of dynamical gauge fields is dominated by the matrix
pseudofermion momenta updates are performed at a larg8iversion. _ _ _
step sizeA 7= A7, and the cheaper gauge momenta updates Simulation results_ are presented in Table Il. Simulations
are performed more ofted 7,=(1/n) A7, for some inte- for both Lusher-Weisz and DBW2 glue are performed, at
ger n. Molecular dynamics trajectories are of unit length, different 3 and « values to conduct an initial exploration of
nmdAT:]-' In particu|ar, we have imp'emented a modified the parameter Space.. P|0n. masses and |att|ce_ SpaCIngS are
version of the Ritz algorithm to diagonalise arrays of 3 ~ obtained from 20 configurations for eaghand« given. We
matrices in parallel. This routine is used in the(Slprojec- ~ Observe that to obtain similar lattice spacings to our
tion step, and is also used to calculate the matrix exponerfiuenched lattices, we must work at smajfevalues for our
tials that are needed in other parts of the algorithm, avoidingnduenched gauge fields. This is in accord with the expected
the need to use polynomial approximations to the exponerfeno_rmalization gf the strong coupling constant confirmed in
tial. This means that the accuracy of the exponential in EqPrevious dynamical fermion studies. As a result the mean
(12) does not depend upon the step siee link ug is significantly further from unity for unquenched
An eighth order Zolotarev approximation to the inverselattices than quenched lattices, although the effect is more
square root is used to approximaté, , in unit circle pro- pronounced for the ng$1er—We|sz glue than the DBW2 glue.
jection. We find that the spectral range at this order is ampleQur results also confirm the well known fact that@sand
In smooth gauge backgrounds it is easily shown that unithe quark mass are decreased one must reduce the step size
circle projection is well defined, that is, déf Vv, ,>0. A7 in order to maintain a constant acceptance rate. Although
If we assume a smoothness conditidil— Uy @n exact comparison is difficult, for a given step size and
<e Vx,u,v, then we have a lower bound ' quark mass, our _acceptance rates obtained compare well with
standard simulationésee, for example, Ref27]).
It is a simple exercise to apply our results to generate
VL,XV#,Pl_zaE— a?e?, gauge fields with dynamical FLIC overlap quarks, although
this would be extremely computationally intensive. The
availability of HMC as a simulation algorithm for dynamical
To prove this, we note that APE blocking may be written in FLIC fermions is significant, as it scales almost linearly with
terms of the plaquette field the lattice volumeV, whereas previously there were only

ds [ds|T
' ldu
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TABLE Il. Simulation parameters and results for various dynamical simulations. The parameters are the gauge coupling, hopping
parameter, gauge action, step size, and psuedofermion to gauge step size ratio. The results given are the mean link, latticefispacing
obtained fromr via the static quark potentigind pion massin GeV). Two degenerate flavors of FLIC sea quarks are used, with either
Luscher-WeisZIMP) glue or DBW2 glue. These results are obtained from 2Dx124 configurations. Simulations are done using multiple
time step HMC with trajectories of unit length.

B K Syauge AT ATplATy Pace Ug a m,_.
3.6 0.1347 IMP 0.0143 2 0.55 0.8226 0.297 0.702
3.7 0.1340 IMP 0.0147 2 0.64 0.8338 0.248 0.680
3.8 0.1332 IMP 0.0151 2 0.65 0.8443 0.180 0.738
3.9 0.1310 IMP 0.0200 2 0.66 0.8534 0.183 0.834
39 0.1325 IMP 0.0156 2 0.55 0.8540 0.126 0.702
4.0 0.1301 IMP 0.0200 2 0.66 0.8614 0.32 0.906
4.0 0.1318 IMP 0.0161 2 0.64 0.8625 0.1 0.799
4.1 0.1283 IMP 0.0200 2 0.75 0.8680 0.114 1.088
4.1 0.1305 IMP 0.0166 2 0.70 0.8685 0.1o4 0.668
4.2 0.1246 IMP 0.0200 2 0.86 0.8736 0.107 1.496
4.2 0.1266 IMP 0.0200 2 0.80 0.8738 0.097 1.346
4.3 0.1253 IMP 0.0200 2 0.83 0.8788 0.091 1.574
4.4 0.1255 IMP 0.0200 2 0.88 0.8836 0.086 1.411
4.5 0.1253 IMP 0.0200 2 0.83 0.8878 0.015 1.657
4.6 0.1254 IMP 0.0200 2 0.84 0.8916 0.012 1.617
7.0 0.1315 DBW2 0.0152 2 0.74 0.8344 0.252 0.780
7.0 0.1345 DBW2 0.0156 2 0.68 0.8352 0.283 0.673
7.5 0.1310 DBW2 0.0156 2 0.79 0.8516 0.28)6 0.779
8.0 0.1305 DBW?2 0.0161 2 0.73 0.8663 0.1n8 0.764
8.5 0.1300 DBW?2 0.0166 3 0.71 0.8774 0.1B4 0.782
9.0 0.1224 DBW?2 0.0200 2 0.79 0.8858 0.137 1.412
9.0 0.1296 DBW?2 0.0200 2 0.78 0.8865 0.1m5 0.753
9.5 0.1228 DBW?2 0.0200 2 0.82 0.8934 0.199 1.576
10.0 0.1234 DBW?2 0.0200 2 0.83 0.9000 0.99 1.502
10.5 0.1236 DBW2 0.0200 2 0.79 0.9056 0.093 1.567
11.0 0.1239 DBW2 0.0200 2 0.81 0.9110 0.086 1.473
O(V?) alternatives[28]. Furthermore, the method we have ACKNOWLEDGMENTS

described is general and can be straightforwardly applied to
any fermion action with reuniterization, including overlap

fermions with a fat link kerne[29-32, or other types of Australian Research Counci{lARC). Computations were
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