52 research outputs found

    Contribution of oxide supports in nickel-based catalytic elimination of greenhouse gases and generation of syngas

    Get PDF
    Carbon dioxide and/or dry methane reforming serves as an effective pathway to mitigate these greenhouse gases. This work evaluates different oxide supports including alumina, Y-zeolite and H-ZSM-5 zeolite for the catalysis of dry reforming methane with Nickel (Ni). The composite catalysts were prepared by impregnating the supports with Ni (5%) and followed by calcination. The zeolite supported catalysts exhibited more reducibility and basicity compared to the alumina supported catalysts, this was assessed with temperature programmed reduction using hydrogen and desorption using carbon dioxide. The catalytic activity, in terms of CH4 conversion, indicated that 5 wt% Ni supported on alumina exhibited higher CH4 conversion (80.5%) than when supported on Y-zeolite (71.8%) or H-ZSM-5 (78.5%). In contrast, the H-ZSM-5 catalyst led to higher CO2 conversion (87.3%) than Y-zeolite (68.4%) and alumina (83.9%) supported catalysts. The stability tests for 9 h time-on-stream showed that Ni supported with H-ZSM-5 had less deactivation (just 2%) due to carbon deposition. The characterization of spent catalysts using temperature programmed oxidation (O2-TPO), X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) revealed that carbon deposition was a main cause of deactivation and that it occurred in the lowest degree on the Ni H-ZSM-5 catalyst

    Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review

    Get PDF
    In the last three decades, pharmaceutical research has increased tremendously to offer safe and healthy life. However, the high consumption of these harmful drugs has risen devastating impact on ecosystems. Therefore, it is worldwide paramount concern to effectively clean pharmaceuticals contaminated water streams to ensure safer environment and healthier life. Nanotechnology enables to produce new, high-technical material, such as membranes, adsorbent, nano-catalysts, functional surfaces, coverages and reagents for more effective water and wastewater cleanup processes. Nevertheless, nano-sorbent materials are regarded the most appropriate treatment technology for water and wastewater because of their facile application and a large number of adsorbents. Several conventional techniques have been operational for domestic wastewater treatment but are inefficient for pharmaceuticals removal. Alternatively, adsorption techniques have played a pivotal role in water and wastewater treatment for a long, but their rise in attraction is proportional with the continuous emergence of new micropollutants in the aquatic environment and new discoveries of sustainable and low-cost adsorbents. Recently, advancements in adsorption technique for wastewater treatment through nanoadsorbents has greatly increased due to its low production cost, sustainability, better physicochemical properties and high removal performance for pharmaceuticals. Herein, this review critically evaluates the performance of sustainable green nanoadsorbent for the remediation of pharmaceutical pollutants from water. The influential sorption parameters and interaction mechanism are also discussed. Moreover, the future prospects of nanoadsorbents for the remediation of pharmaceuticals are also presented

    The influence of hydrostatic pressure on the magnetic and magnetocaloric properties of DyRu2Si2

    Get PDF
    We report the magnetic and magnetocaloric properties of the tetragonal rare-earth compound DyRu2Si2 under applied hydrostatic pressure. The isothermal entropy change (ΔS) and the adiabatic temperature change (ΔTad) were calculated from magnetization data collected at different applied pressures and from heat capacity measurements conducted at atmospheric pressure, respectively. The application of hydrostatic pressure significantly modified the multi-step magnetization curve and the saturation magnetization. A suppression of the magnetization was observed for P = 0.588 GPa and P = 0.654 GPa whereas, at about P ≈1 GPa, the saturation magnetization increased and the magnetization isotherms again resembled the curves measured at atmospheric pressure. A small thermal hysteresis was observed between the heating and cooling M(T) curves at Tt=3.4 K, with an applied magnetic field of H = 0.1 T. This thermal hysteresis indicates a first-order like transition which was also supported by the Arrott plot analysis. The volume magnetostriction was estimated from the pressure-dependent magnetization measurements using a Maxwell relation

    Partial Observer Decision Process Model for Crane-Robot Action

    Get PDF
    The most common use of robots is to effectively decrease the human’s effort with desirable output. In the human-robot interaction, it is essential for both parties to predict subsequent actions based on their present actions so as to well complete the cooperative work. A lot of effort has been devoted in order to attain cooperative work between human and robot precisely. In case of decision making , it is observed from the previous studies that short-term or midterm forecasting have long time horizon to adjust and react. To address this problem, we suggested a new vision-based interaction model. The suggested model reduces the error amplification problem by applying the prior inputs through their features, which are repossessed by a deep belief network (DBN) though Boltzmann machine (BM) mechanism. Additionally, we present a mechanism to decide the possible outcome (accept or reject). The said mechanism evaluates the model on several datasets. Hence, the systems would be able to capture the related information using the motion of the objects. And it updates this information for verification, tracking, acquisition, and extractions of images in order to adapt the situation. Furthermore, we have suggested an intelligent purifier filter (IPF) and learning algorithm based on vision theories in order to make the proposed approach stronger. Experiments show the higher performance of the proposed model compared to the state-of-the-art methods.https://doi.org/10.1155/2020/634934

    Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys

    Get PDF
    A novel physical phenomenon has been observed that resembles a large asymmetric switchinglike magnetoresistance at low applied fields in bulk metamagnetic Heusler alloys. A thermally activated isothermal forward metamagnetic transition with a signature of a pronounced time-dependent relaxation was observed in a bulk B-substituted off-stoichiometric Ni-Mn-In Heusler alloy, whereas the reverse metamagnetic transition exhibited the usual athermal behavior with no thermal activation. The asymmetry between the forward and reverse metamagnetic transitions resulted in a large switchinglike, low-field magnetoresistance (∼16% for a field change of B = 0 → 0.25 T at T = 304 K) in the bulk Heusler alloys, Ni50Mn35In15-xBx (1 ≤ x ≤ 2). © 2014 American Physical Society

    CRP Gene Polymorphism and Their Risk Association With Type 2 Diabetes Mellitus

    Get PDF
    BACKGROUND: C-reactive protein (CRP) is an inflammatory marker associated with T2DM, obesity, insulin resistance, and cardiovascular disease. AIM: The present study evaluates the association of CRP +1059 G/C polymorphism of the CRP gene in 100 T2D cases and 100 healthy controls. METHODS: Present study was done by allele specific PCR method to study the CRP gene polymorphism in study subjects. RESULTS: Study found that CRP (+1059 G/C) genotype distribution among case and controls was found to be significant (p=0.001), Higher CRP C allele frequency (0.16) was observed compared to controls (0.04). CRP +1059 GC and CC had 2.72 (1.12-6.61), 20.56 (1.16-362.1) risk for T2D. It has been observed, HTN, Obesity, Smoking and alcoholism was found to be associated with increased risk of T2D, and a significant difference was observed in biochemical parameters. CONCLUSION: Study concluded that CRP gene polymorphism was found to be associated with risk of Type 2 Diabetes and risk was linked with heterozygosity and mutant homozygosity. Hypertension, Obesity, Smoking and alcoholism increases the risk of occurrence of Type 2 Diabetes

    Wastewater-irrigated vegetables are a significant source of heavy metal contaminants : toxicity and health risks

    Get PDF
    Water contaminated with heavy metals constitutes an important threat. This threat is a real problem with a negative impact in some developing countries where untreated industrial effluents are used for irrigation. The present study examines heavy metals in wastewater-irrigated vegetables (apple gourd, spinach, cauliflower, sponge gourd, and coriander) water, and soil from Chenab Nagar, Chiniot, Pakistan. In particular, the metals quantified were cadmium (Cd), chromium (Cr), cobalt (Co), nickel (Ni), lead (Pb), and manganese (Mn). Among them, Cr and Co in crops irrigated -wastewater exceeded the levels recommended by the World Health Organization (WHO). In contrast, Ni, Cu, Pb, and Mn concentrations were in line with WHO standards. Compared with the limits established by the Food and Agriculture Organization of the United Nations (FAO), all the study vegetables presented higher (thus unsafe) concentrations of Cd (0.38 to 1.205 mg/Kg). There were also unsafe concentrations of Cr in coriander, sponge gourd, and cauliflower. Pb was found at an unsafe concentration (0.59 mg/Kg) in cauliflower. Conversely, Ni and Mn concentrations were below the maximum permissible limits by WHO, and FAO in all of the analyzed samples. The contamination load index (CLI) in soil, bioconcentration factor (BCF) in plants, daily intake of metals (DIM), and health risk index (HRI) have also been evaluated to estimate the potential risk to human health in that area. We have found an important risk of transitions of Pb, Cd, Cr, and Co from water/soil to the edible part of the plant. The highest HRI value associated with Cd (6.10–13.85) followed by Cr (1.25–7.67) for all vegetable samples presented them as high health risk metal contaminants. If the issue is not addressed, consumption of wastewater-irrigated vegetables will continue posing a health risk

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore