146 research outputs found

    Abundant Degenerate Miniature Inverted-Repeat Transposable Elements in Genomes of Epichloid Fungal Endophytes of Grasses

    Get PDF
    Miniature inverted-repeat transposable elements (MITEs) are abundant repeat elements in plant and animal genomes; however, there are few analyses of these elements in fungal genomes. Analysis of the draft genome sequence of the fungal endophyte Epichloë festucae revealed 13 MITE families that make up almost 1% of the E. festucae genome, and relics of putative autonomous parent elements were identified for three families. Sequence and DNA hybridization analyses suggest that at least some of the MITEs identified in the study were active early in the evolution of Epichloë but are not found in closely related genera. Analysis of MITE integration sites showed that these elements have a moderate integration site preference for 5′ genic regions of the E. festucae genome and are particularly enriched near genes for secondary metabolism. Copies of the EFT-3m/Toru element appear to have mediated recombination events that may have abolished synthesis of two fungal alkaloids in different epichloae. This work provides insight into the potential impact of MITEs on epichloae evolution and provides a foundation for analysis in other fungal genomes

    Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci

    Get PDF
    The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some—including the infamous ergot alkaloids—have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses

    Phylogenies of <i>rpbA</i> from sequenced isolates and other Clavicipitaceae.

    No full text
    <p>The phylogenetic tree is based on nucleotide alignment for a portion of the RNA polymerase II largest subunit gene, <i>rpbA</i>. This tree is rooted with <i>Fusarium graminearum</i> as the outgroup. Epichloae are indicated in green, <i>Claviceps</i> species are indicated in blue, <i>Periglandula</i> species are indicated in red, and <i>Aciculosporium take</i> is in black. Species for which genomes were sequenced in this study are shown in bold type, and asterisks indicate plant-associated fungi. Alkaloids listed are the major pathway end-products predicted from the genome sequences, abbreviated as shown in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g002" target="_blank">Figure 2</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g003" target="_blank">Figure 3</a>, <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g004" target="_blank">Figure 4</a>. Other abbreviations: (−) = some genes or remnants present, but not predicted to make alkaloids of this class, – = no genes present for this alkaloid class, EA = ergot alkaloids may be produced; IDT = indole-diterpenes may be produced, (ΔR*) = deletion of terminal reductase domain of <i>perA</i>.</p

    Symbiosis of meadow fescue with <i>Epichloë festucae</i>, a heritable symbiont.

    No full text
    <p>Single optical slice confocal micrographs of <i>E. festucae</i> expressing enhanced cyan-fluorescent protein were overlain with DIC bright field images of (A) ovules (bar = 100 µm), (B) embryos (bar = 200 µm), and (C) shoot apical meristem and surrounding new leaves (bar = 200 µm). (D) Asymptomatic (left) and “choked” (right) inflorescences simultaneously produced on a single grass plant infected with a single <i>E. festucae</i> genotype. Vertical (seed) transmission of the symbiont occurs via the asymptomatic inflorescence, whereas the choked inflorescence bears the <i>E. festucae</i> fruiting structure (stroma), which produces sexually derived spores (ascospores) that mediate horizontal transmission.</p

    Genic and repeat DNA contents of sequenced genomes.<sup>a</sup>

    No full text
    a<p>Abbreviations: CDS = coding sequence, MT = mating type, non-Rpt-IG = nonrepetitive intergenic DNA, Rpt = repetitive DNA.</p>b<p>Based on total of contigs ≥500 bp. These sizes differ slightly from total scaffold lengths given in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-t001" target="_blank">Table 1</a> for <i>C. purpurea</i> 20.1, <i>E. festucae</i> E2368, and <i>E. festucae</i> Fl1.</p>c<p><i>C. fusiformis</i> PRL 1980 mating type genes include <i>mtBA</i> and <i>mtAC</i>. <i>P. ipomoeae</i> IasaF13 mating type genes <i>mtAA</i> and <i>mtAC</i> appear to have premature stop codons.</p>d<p>Statistics for <i>P. ipomoeae</i> are tentative because the assembly was filtered by selecting only contigs containing tBLASTx matches to genome sequences from the other Clavicipitaceae.</p

    Ergot alkaloids and summary of biosynthesis pathway.

    No full text
    <p>(A) Ergoline alkaloid biosynthesis pathways in the Clavicipitaceae. Arrows indicate one or more steps catalyzed by products of genes indicated. Arrows and genes in blue indicate steps in synthesis of the first fully cyclized intermediate (skeleton). Variation in the <i>easA</i> gene (underlined) determines whether the ergoline skeleton is festuclavine or agroclavine. Arrows and genes in red indicate steps in decoration of the skeleton to give the variety of ergolines in the Clavicipitaceae. Asterisks indicate genes newly discovered in the genome sequences of <i>C. paspali</i>, <i>N. gansuense</i> var. <i>inebrians</i> and <i>P. ipomoeae</i>. (B) Ergopeptines produced by strains in this study.</p

    Peramine biosynthesis loci (<i>PER</i>) in epichloae and the homologous loci in other Clavicipitaceae.

    No full text
    <p>On each map <i>perA</i> is color-coded blue for a complete gene and as an open box for <i>perA-</i>ΔR*. Domains of <i>perA</i> are indicated as A (adenylation), T (thiolation), C (condensation), M (<i>N</i>-methylation) and R* (reduction). Subscripts indicate postulated specificity of adenylation domains for 1-pyrroline-5-carboxylate (A<sub>P</sub>) and arginine (A<sub>R</sub>) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen.1003323-Tanaka1" target="_blank">[16]</a>. Other features are indicated as in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g007" target="_blank">Figure 7</a>.</p

    Structures of the ergot alkaloid biosynthesis loci (<i>EAS</i>) in sequenced genomes.

    No full text
    <p>Tracks from top to bottom of each map represent the following: genes, repeats, MITEs, and graphs of AT (red) and GC (blue) contents. Each gene is represented by one or more boxes representing the coding sequences in exons, and an arrow indicating the direction of transcription. Double-slash marks (//) indicate sequence gaps within scaffolds of the assembled <i>E. festucae</i> genome sequences. Closed circles indicate telomeres, and distances from the telomere on the <i>E. festucae</i> map are indicated in kilobasepairs (kb). Cyan bars beneath each map represent repeat sequences, and are labeled with names or numbers to indicate relationships between repeats in the different species. Vertical bars beneath the repeat maps indicate MITEs. Gene names are abbreviated <i>A</i> through <i>P</i> for <i>easA</i> through <i>easP</i>, <i>W</i> for <i>dmaW</i>, and <i>clo</i> for <i>cloA</i>. Genes for synthesis of the ergoline ring system (skeleton) are shown in dark blue for the steps to chanoclavine-I (<i>W</i>, <i>F</i>, <i>E</i>, and <i>C</i>), and in light blue (<i>D</i>, <i>A</i>, and <i>G</i>) for steps to agroclavine. Genes for subsequent chemical decorations are shown in red (<i>clo</i>, <i>H</i>, <i>O</i>, <i>P</i>, <i>lpsA</i>, <i>lpsB</i>, and <i>lpsC</i>). Identifiable genes flanking the clusters are indicated in gray, and unfilled arrows indicate pseudogenes. The major pathway end-products for each strain are listed below each species name, abbreviated as indicated in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003323#pgen-1003323-g002" target="_blank">Figure 2</a>, and in bold for those confirmed in this study. Note that LAH is a reported product of <i>C. paspali</i>, but the sequenced strain is predicted not to synthesize it due to a defective <i>easE</i> gene.</p
    corecore