11,077 research outputs found
SUSY R parity violation and CP asymmetry in semi-leptonic tau-decays
We analyze the CP violation in the semileptonic | \Delta S|=1 tau-decays in
supersymmetric extensions of the standard model (SM) with R parity violating
term. We show that the CP asymmetry of tau-decay is enhanced significantly and
the current experimental limits obtained by CLEO collaborations can be easily
accommodated. We argue that observing CP violation in semi leptonic tau-decay
would be a clear evidence for R-parity violating SUSY extension of the SM.Comment: 5 pages, 2 figure
Trophic interactions in the coastal ecosystem of Morocco: An Ecopath approach
Abstract
The Moroccan Atlantic coast is considered as one of the richest fishing areas in the world, having rich biodiversity, and supporting the fisheries sector. However, studies have shown that the ecosystem presently suffers from overexploitation of fishery resources and environmental degradation. To quantify these impacts, the characterization of the ecosystem is essential. In this work, an Ecopath model (EwE), which assumes steady-state and mass-balanced conditions for the Moroccan Atlantic coast ecosystem, was developed and balanced. Network analysis included in the Ecopath software package was used to estimate trophic interactions and the maturity of the ecosystem. The model consisted of 29 functional groups. The results showed a Total System Throughput (TST) which is comprised mainly of flows into detritus, followed by export, consumption, and respiration. Systemic indicators, suggest that the Moroccan Atlantic coast is an immature and developing ecosystem. Further observations on the functioning and dynamics of the ecosystem are discussed
Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells
In this work, the role of reduced graphene oxide (rGO) with hyperbranched surfactant and its hybridisation with multiwalled carbon nanotubes (MWCNTs) and platinum (Pt) nanoparticles (NPs) as counter electrode (CE) were investigated to determine the photovoltaic performance of dye-sensitised solar cells (DSSCs). Sodium 1,4-is(neopentyloxy)-3-(neopentyloxycarbonyl)- 1,4-dioxobutane-2-sulphonate (TC14) surfactant was utilised as dispersing and stabilising agent in electrochemical exfoliation to synthesise graphene oxide (GO) as initial solution for rGO production prior to its further hybridisation and fabrication as thin film. A chemical reduction process utilising hydrazine hydrate was conducted to produce rGO due to the low temperature
process and water-based GO solution. Subsequently, hybrid solution was prepared by mixing 1 wt% MWCNTs into the produced rGO solution. TC14-rGO and TC14-rGO_MWCNTs hybrid solution were transferred into fluorine-doped tin oxide substrate to fabricate thin film by spraying deposition method. Finally, the CE films were prepared by coating with thin Pt NPs. Photoanode film was prepared by a two-step process: hydrothermal growth method to synthesise titanium dioxide
nanowires (TiO2 NWs) and subsequent squeegee method to apply TiO2
NPs. According to solar simulator measurement, the highest energy conversion efficiency (η) was achieved by using CE-based TC14-rGO_MWCNTs/Pt (1.553%), with the highest short current density of 4.424 mA/cm2. The highest η was due to the high conductivity of CE hybrid film and the morphology of fabricated TiO2 NWs/TiO2 NPs. Consequently, the dye adsorption was high, and the photovoltaic performance of DSSCs was increased. This result also showed that rGO and rGO_MWCNTs hybrid can be used as considerable potential candidate materials to replace Pt gradually
A study of some atomic properties for He-like selected ions
The atomic properties have been studied for He-like ions (He atom, Li+, Be2+ and B3+ions). These properties included, the atomic form factor f(S), electron density at the nucleus , nuclear magnetic shielding constant and diamagnetic susceptibility ,which are very important in the study of physical properties of the atoms and ions.
For these purpose two types of the wave functions applied are used, the Hartree-Fock (HF) waves function (uncorrelated) and the Configuration interaction (CI) wave function (correlated). All the results and the behaviors obtained in this work have been discussed, interpreted and compared with those previously obtained
Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances
This is the post print version of the article. The official published version can be obained from the link - Copyright 2009 IOP Publishing LtdThis paper is concerned with the synchronization problem for a new class of continuous time delayed complex networks with stochastic nonlinearities (randomly occurring nonlinearities), interval time-varying delays, unbounded distributed delays as well as multiple stochastic disturbances. The stochastic nonlinearities and multiple stochastic disturbances are investigated here in order to reflect more realistic dynamical behaviors of the complex networks that are affected by the noisy environment. By utilizing a new matrix functional with the idea of partitioning the lower bound h1 of the time-varying delay, we employ the stochastic analysis techniques and the properties of the Kronecker product to establish delay-dependent synchronization criteria that ensure the globally asymptotically mean-square synchronization of the addressed stochastic delayed complex networks. The sufficient conditions obtained are in the form of linear matrix inequalities (LMIs) whose solutions can be readily solved by using the standard numerical software. A numerical example is exploited to show the applicability of the proposed results.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, an International Joint Project sponsored by the Royal Society of the UK, the National 973 Program of China under Grant 2009CB320600, the National Natural Science Foundation of China under Grant 60804028, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers under Grant 200802861044, the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, and the Alexander von Humboldt Foundation of Germany
Sterile neutrino dark matter in extension of the standard model and galactic 511 keV line
Sterile right-handed neutrinos can be naturally embedded in a low scale
gauged extension of the standard model. We show that, within a low
reheating scenario, such a neutrino is an interesting candidate for dark
matter. We emphasize that if the neutrino mass is of order of MeV, then it
accounts for the measured dark matter relic density and also accommodates the
observed flux of 511 keV photons from the galactic bulge.Comment: 10 pages, 1 figure, references added, final version appeared in JCA
Evaluation of the probiotic potential of lactic acid bacteria isolated from faeces of breast-fed infants in Egypt
The probiotic-related characteristics of 55 strains of lactic acid bacteria isolated from the faeces of 3 - 6 months old breast-fed infants were determined. The API 50 CH and SDS-PAGE techniques wereemployed to ascertain the identity of the isolated strains. The predominant species among the isolated strains were Lactobacillus (Lb.) acidophilus, Lb. plantarum, Enterococcus (E.) faecium, and E. faecalis. Probiotic properties such as bile resistance, acid tolerance, and adhesion to intestinal mucous were assessed. In vitro results obtained showed that five strains, Lb. plantarum (P1 and P164), Lb. pentosus (P191), and Lb. fermentum (P10, P193) were able to meet the basic requirements for probiotic functions as they demonstrated probiotic characteristics such as tolerance to pH 3, growth in 0.4% oxgall and adhesion to intestinal mucous. The results obtained in this investigation will be used to selectpotentially probiotic strains for in vivo study
Bond graphs in model matching control
Bond graphs are primarily used in the network modeling of lumped parameter physical systems, but controller design with this graphical technique is relatively unexplored. It is shown that bond graphs can be used as a tool for certain model matching control designs. Some basic facts on the nonlinear model matching problem are recalled. The model matching problem is then associated with a particular disturbance decoupling problem, and it is demonstrated that bicausal assignment methods for bond graphs can be applied to solve the disturbance decoupling problem as to meet the model matching objective. The adopted bond graph approach is presented through a detailed example, which shows that the obtained controller induces port-Hamiltonian error dynamics. As a result, the closed loop system has an associated standard bond graph representation, thereby rendering energy shaping and damping injection possible from within a graphical context
Calculating the density of electronic charge for hydrogen atom and ions like atom
The radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3)
- …