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Bond Graphs in Model Matching Control

DUSTIN VINK∗,1 DONALD BALLANCE∗ AND PETER GAWTHROP∗

SUMMARY

Bond graphs are primarily used in the network modelling of lumped parameter physical systems, but con-
troller design with this graphical technique is relatively unexplored. It is shown that bond graphs can be
used as a tool for certain model matching control designs.

Some basic facts on the nonlinear model matching problem are recalled. The model matching problem
is then associated with a particular disturbance decoupling problem, and it is demonstrated that bicausal
assignment methods for bond graphs can be applied to solve the disturbance decoupling problem as to meet
the model matching objective.

The adopted bond graph approach is presented through a detailed example, which shows that the ob-
tained controller induces port–Hamiltonian error dynamics. As a result, the closed loop system has an
associated standard bond graph representation, thereby rendering energy shaping and damping injection
possible from within a graphical context.

Keywords: bond graph, bicausality, model matching, passivity, Hamiltonian.

1. INTRODUCTION

Henry Paynter introduced the bond graph methodology in 1959, and this graphi-
cal modelling technique has proven to be a convenient framework for the network
modelling of lumped parameter physical systems. Bond graph theory has developed
rapidly over the years and a variety of standard textbooks are now available; the reader
is referred to the seminal book by Karnopp, Margolis and Rosenberg [9] for a com-
prehensive treatment on bond graph modelling.

It can be safely argued that the modelling capabilities of bond graphs are well
understood. However, bond graph tools in control are considerably less explored, of
which some results can be found in [4],[8], [14] and references therein. The shortage of
literature on bond graph based control has compelled us to contribute bond graph tools
for certain model matching problems. Of course, the authors are aware that passivity–
based methods form a vast field in control design, so our account should be viewed as
just one possible application of passivity concepts in physical model based control.

1Address correspondance to: Dustin Vink, d.vink@mech.gla.ac.uk
∗Department of Mechanical Engineering, University of Glasgow, University Avenue, G12 8QQ, Glasgow,
Scotland.
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This paper is organised as follows. Some essentials on the nonlinear Model Match-
ing Problem (MMP) are addressed as detailed by Huijberts [7]. Then it is recalled
that the MMP can be associated with a Disturbance Decoupling Problem (DDP), and
to facilitate certain DDP solvability requirements, the DDP is formulated in terms of
virtual actuation concepts.

Bicausal bond graphs, as introduced by Gawthrop [2], are used to find the controls
that solve the associated DDP. It is shown that the controller induces port–Hamiltonian
error dynamics such that a standard bond graph representation of this dynamics be-
comes possible. Further stabilisation is subsequently achieved through bond graph
arguments. The reader is referred to [1], [5] and [13] for a comprehensive treatment
on port–Hamiltonian systems.

To demonstrate the proposed methodology, a detailed example is presented. How-
ever, it was not attempted to derive a strict bond graph procedure for two main reasons.
First, it is difficult to generalise in a nonlinear context, if not impossible. Second, the
methodology considered here is based on the property that port–Hamiltonian error dy-
namics is induced by the controller, but it has not been verified whether this holds for
general classes of bond graph models for which a particular MMP is solvable. Further
research on this topic is required.

Now, it is certainly the case that bicausal bond graphs are not new and that they
are widely used for many applications. On the other hand, the authors believe that
the significance of this paper can be attributed to the explicit association of bicausal
bond graphs with the DDP in the context of existing MMP theory. So, to the best of
our knowledge, current applications of bicausal bond graphs in controller design have
never been identified with the existing MMP theory as presented in [7] and references
therein. The approach presented here could possibly spur, or perhaps renew, further
research on bicausal bond graphs in physical model based control design.

2. PRELIMINARIES

Consider the nonlinear plant of the form

P :

{

ẋ = f(x) + g(x)u

y = h(x)
(2.1)

where x = (x1, . . . , xn) ∈ R
n are local coordinates, u ∈ R

m and y ∈ R
p are the sys-

tem inputs and outputs respectively; f(x) and g(x) are smooth vector fields, and h(x)
is a smooth function. Furthermore, consider the nonlinear model of the form

M :

{

˙̄x = f̄(x̄) + ḡ(x̄)ū

ȳ = h̄(x̄)
(2.2)
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where x̄ = (x̄1, . . . , x̄n̄) ∈ R
n̄ are local coordinates, ū ∈ R

m̄ and ȳ ∈ R
p are the

model inputs and outputs respectively; f̄(x̄) and ḡ(x̄) are smooth vector fields, and
h̄(x̄) is a smooth function. Moreover, take m̄ ≤ m but observe that P and M have the
same number of outputs.

Definition 2.1 (Nonlinear Model Matching Problem (MMP)). Consider the plant
P of the form (2.1) and the model M of the form (2.2). The MMP is said to be locally
solvable around (x0, x̄0) ∈ R

n × R
n̄ if there exist controls u(t) such that the plant

outputs y(t) track the model outputs ȳ(t).

The above definition covers the essence of the MMP as described by
Huijberts [7], in which two cases of the MMP are addressed: strong and weak
model matching. The strong MMP has the control objective |y(t) − ȳ(t)| = 0 for all
t ≥ 0 whereas the weak MMP aims at the convergence property |y(t) − ȳ(t)| → 0 as
t→ ∞. Note that | · | denotes the usual Euclidean norm. It can be said that strong
model matching is achieved through proper controller initialisation, but this could be
difficult to achieve in real applications. The weak MMP will therefore be considered
in the following developments only.

Now, the MMP for P and M can be solved by solving its associated DDP [6]. To
this end, one considers the extended system E = P ×M defined as

E :

{

ẋe = fe(xe) + ge(xe)u+ pe(xe)ū

ye = he(xe)
(2.3)

where xe = (x, x̄) and

fe(xe) =

[

f(x)
f̄(x̄)

]

, ge(xe) =

[

g(x)
0

]

(2.4)

pe(xe) =

[

0
ḡ(x̄)

]

, he(xe) = h(x) − h̄(x̄). (2.5)

The key step in solving the MMP is to view the model inputs ū as disturbances to the
extended systemE, so that solving the MMP turns into a DDP: The output ye(xe) is to
be rendered independent of ū through the controls u, if possible. And to achieve output
matching, the output ye(xe) is to be stabilised to zero by further control. Huijberts [7]
offers the following result on the solvability of the MMP.

Theorem 2.1. Consider the nonlinear plant P and the nonlinear model M. Let the
point (x0, x̄0) ∈ R

n × R
n̄ be given. The MMP is locally solvable around (x0, x̄0) if

and only if the non–regular dynamic disturbance decoupling with disturbance mea-
surement is locally solvable around (x0, x̄0).
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The solvability requirements of various disturbance decoupling problems can be
stated in terms of maximally controlled invariant distributions or algorithms [7]. These
solvability requirements are not elaborated. However, for the DDP considered here, it
generally suffices to require that relative degrees of model inputs ū are not strictly less
than the plant inputs u with respect to the output ye(xe). This requirement allows the
disturbances ū to be “intercepted” by the controls u in many cases.

3. SETTING UP THE NONLINEAR MODEL MATCHING PROBLEM

This section defines a particular form of the MPP through the use of virtual actuator
concepts in a physical model based context. It is not attempted to derive a strict bond
graph approach, but a more heuristic approach is taken instead to retain flexibility in
the design.

It is shown that bicausal bond graphs [2] can be used to solve the associated DDP
by effectively inverting the plant such that controls for disturbance decoupling are
readily found.

3.1. Defining the plant bond graph

To give physical structure to the general MMP as described earlier, the systems of
both the plant (2.1) and model (2.2) are specified with bond graphs. To this end, a
vector bond graph for P depicted in Figure 1 is considered. The inputs and outputs
are defined as

ũ1 = (ũ1

1
, . . . , ũ1

m1
), ũ2 = (ũ2

1
, . . . , ũ2

m2
)

u1 = (u1

1
, . . . , u1

p1
), u2 = (u2

1
, . . . , u2

p2
)

y1 = (y1

1
, . . . , y1

p1
), y2 = (y2

1
, . . . , y2

p2
)

(3.1)

such that m1 +m2 + p1 + p2 = m and p1 + p2 = p. Note that the superscripts “1”
and “2” associate their variables with flow and effort sources respectively. The total
stored energy of the plant is denoted by the smooth Hamiltonian H : R

n → R, which
comprises the energy stored in I, C and possibly multi–port elements.

The conjugate outputs of ũ1 and ũ2, being ỹ1 and ỹ2 respectively, will not play any
role in the MMP considered here and have therefore been ignored. However, ignoring
these outputs will lead to a plant P that is not port–Hamiltonian: Standard bond graphs
of which all conjugate input and output variables of source elements are taken into
account belong to a class of port–Hamiltonian systems [5]. Nonetheless, it will be
shown that ignoring the outputs ỹ1 and ỹ2 does not pose problems in the context of
the paper, because the main objective is to have port–Hamiltonian error dynamics that
allows for a standard bond graph representation. This will become clear in the sequel.
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Sf

Se

Sf

Se

y1

P : H(x)
ũ1

ũ2

u1

y2

u2

Fig. 1. Plant bond graph

3.2. Defining the model bond graph

Next consider the bond graph model of M depicted in Figure 2, where the pairs
(ū1, ȳ1) and (ū2, ȳ2) are defined as

ū1 = (ū1

1
, . . . , ū1

p1
), ū2 = (ū2

1
, . . . , ū2

p2
)

ȳ1 = (ȳ1

1
, . . . , ȳ1

p1
), ȳ2 = (ȳ2

1
, . . . , ȳ2

p2
).

(3.2)

Note that the number of model inputs and outputs is the same as the number of plant
inputs and outputs (u1, y1) and (u2, y2). The total stored energy is denoted as the
smooth Hamiltonian H̄ : R

n̄ → R.
Let the bond graph of M be identical to P but without the ũ1 and ũ2 inputs. This

is possible because of (3.1) and (3.2). The desired behavior of y is then obtained by
adding bond graph components to M , where the MMP will ensure that y converges
to ȳ, if solvable. The additive components of M therefore act as virtual actuators that
specify desired behavior for the plant outputs.

Sf

Se

ȳ1

M : H̄(x̄)
ū1

ȳ2

ū2

Fig. 2. Model bond graph

3.3. Setting up the DDP

Now that the bond graphs of P and M have been defined, the extended system (2.3)
is readily obtained. To do this, first collect the input and output variables as

u = (u1, u2, ũ1, ũ2), y = (y1, y2)

ū = (ū1, ū2), ȳ = (ȳ1, ȳ2).
(3.3)
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Then by using the fact that standard bond graphs generate a class of port–Hamiltonian
systems [5], it is assumed that the bond graphs of P and M generate the systems

P :

{

ẋ = [J(x) −R(x)]dH(x) − g(x)u

y = h(x).
(3.4)

and

M :

{

˙̄x = [J̄(x̄) − R̄(x̄)]dH̄(x̄) − ḡ(x̄)ū

ȳ = h̄(x̄),
(3.5)

where dH(x) and dH̄(x̄) are column gradient vectors; J(x) = −JT (x) and
R(x) = RT (x) are n× n matrices, and J̄(x̄) = −J̄T (x̄) and R̄(x̄) = R̄T (x̄) are
n̄× n̄ matrices. In addition, both matrices R(x) and R̄(x̄) are positive semidefinite.

In view of (2.3), the MPP can now be associated with a DDP by considering the
extended system
[

ẋ

˙̄x

]

=

[

J(x) −R(x) 0

0 J̄(x̄) − R̄(x̄)

][

dH(x)

dH̄(x̄)

]

−

[

g(x)

0

]

u−

[

0

ḡ(x̄)

]

ū

ye = h(x) − h̄(x̄).

(3.6)

From Theorem 2.1 it follows that the matching of y with ȳ is possible if and only if ye

can be rendered independent of the model inputs ū through the controls u.

3.4. Solving the DDP and MMP

In [7], various procedures for solving DDP’s are addressed but these will not be re-
called here. Nonetheless, it can be argued that many of these procedures have great
similarities with feedback linearisation schemes for the extended system (2.3) of
which the disturbances ū do not have relative degrees strictly less than the relative
degrees of the controls u.

The above consideration will proof to be quite effective in the context of the paper.
First the plant is inverted as depicted in Figure 3. Then the relations y = ȳ are en-
forced, and because inputs ū are treated as measurable disturbances, the example will
show that the relations u1 = ū1 and u2 = ū2 follow as to decouple ū. The controls ũ1

and ũ2 provide the remaining solutions to the DDP.
It is emphasised that solvability of the DDP considered here cannot be guaranteed

by merely inverting the plant as in Figure 3. However, since M is structurally close to
P implies that causal paths from ȳ to ū are topologically similar to the causal paths
from y to u. It therefore seems intuitive plausible that relative degree conditions are
more likely to be satisfied in this case, but further research on DDP solvability in
relation to bicausal bond graph models is certainly needed.



7 BOND GRAPHS IN MODEL MATCHING CONTROL

The MMP can be solved once the model inputs have been decoupled, so that further
control on the decoupled extended system yields the desired decaying behavior of the
extended output ye(xe).

SS

SS SS

SS
y1

P : H(x)
ũ1

ũ2

u1

y2

u2

Fig. 3. Bicausal bond graph of plant P

4. EXAMPLE

This section demonstrates the application of bond graphs for the MMP as defined in
Section 3. The example shows that bond graphs, in combination with virtual actuation
concepts, can clarify certain physical model based control objectives.

4.1. A mechanical system

Consider the mechanical system depicted in Figure 4, of which the plant bond graph
is depicted in Figure 5.

m1 m2

r

k1

k2
ũ1 ũ2

u1 u2
y1 y2

Fig. 4. Mechanical system

The plant inputs u1 and u2 denote forces whereas inputs ũ1 and ũ2 denote veloci-
ties; system outputs y1 and y2 are the respective velocities of masses m1 and m2; pa-
rameters k1 and k2 are spring stiffness constants, and r is the damping coefficient.

Now, it could be desirable to specify desired port behavior for (u1, y1) and (u2, y2)
in terms of a known physical system through control on ũ1 and ũ2. As a result, the
control problem tends to be more physically motivated, thereby making the case for
physical model based controllers and their possible significance. Such an approach
turns out to be possible for the above system in the MMP context of Section 3.
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1

C1 : 1/k1

R : r

0 1

I1 : m1

0 1

Se SeSf Sf

I2 : m2
C2 : 1/k2

ũ1 u1 y1 u2 y2ũ2

Fig. 5. Mechanical system bond graph

To this end, let (x1, . . . , x4) be local coordinates on X = R
4 that correspond to

the storage components C1, C2, I1 and I2 respectively. From the causal assignment it
readily follows that the plant P takes the form









ẋ1

ẋ2

ẋ3

ẋ4









=









0 0 1 0
0 0 −1 1
−1 1 −r 0
0 −1 0 0









dH(x) −









0 0 1 0
0 0 0 1
1 0 −r 0
0 1 0 0









u

y =

[

0 0 1 0
0 0 0 1

]

dH(x)

(4.1)

where uT = (u1, u2, ũ1, ũ2) and where the Hamiltonian H : X → R is defined as

H(x) =
1

2
(k1x

2

1
+ k2x

2

2
+

1

m1

x2

3
+

1

m2

x2

4
). (4.2)

4.2. The model

Suppose that the port pairs (u1, y1) and (u2, y2) of P are to match the port pairs of
some model M as defined in Section 3.2. To do this, consider the model in Figure 6
and its associated bond graph in Figure 7.

The main idea behind the MMP as applied to this example becomes evident by
removing ũ1 and ũ2 from P such that M becomes equivalent to P once C3 of M has
been removed. Hence, the C3 component is seen to virtually actuate P through the
controls ũ1 and ũ2, which can be considered to be working in the background as to
attain the desired port behavior for (u1, y1) and (u2, y2).
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r

k1

ȳ1

m1

k2

ū2

f(x)

ȳ2

m2

ū1

Fig. 6. Mechanical model

1

I1 : m1

0 1

Se Se

I2 : m2
C2 : 1/k2

1

R : r

C1 : 1/k1

C3

ū1 ȳ1 ū2 ȳ2

Fig. 7. Mechanical model bond graph

Let (x̄1, . . . , x̄5) be local coordinates on X̄ = R
5 that correspond to the C1, C2, I1, I2

and C3 elements respectively, then standard causal analysis yields the system












˙̄x1

˙̄x2

˙̄x3

˙̄x4

˙̄x5













=













0 0 1 0 0
0 0 −1 1 0
−1 1 −r 0 0
0 −1 0 0 −1
0 0 0 1 0













dH̄(x̄) −













0 0
0 0
1 0
0 1
0 0













ū

ȳ =

[

0 0 1 0 0
0 0 0 1 0

]

dH̄(x̄)

(4.3)

where ūT = (ū1, ū2) and where the Hamiltonian H̄ : X̄ → R is defined as

H̄(x̄) =
1

2
(k1x̄

2

1
+ k2x̄

2

2
+

1

m1

x̄2

3
+

1

m2

x̄2

4
) + cosh(x̄5). (4.4)

Observe that the nonlinear spring force of C3 is given by f(x̄5) = sinh(x̄5).
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4.3. Solving the DPP

The DDP is now solved in view of the bicausal bond graph arguments of Section 3.4.
To this end, there is no need to construct the extended system (3.6) explicitly since the
feedback linearisation scheme is applied to P only.

Now, the inverse of P can be conveniently depicted and obtained from Fig-
ure 8, which is an important step in the approach considered here.

1

C1 : 1/k1

R : r

0 1

I1 : m1

0 1

Se SeSf Sf

I2 : m2
C2 : 1/k2

ũ1 u1 y1 y2ũ2 u2

Fig. 8. Bicausal plant bond graph

The bond graph inversion of P is particularly instructive since the bicausal bond
graph shows the existence of one–dimensional internal dynamics: The C1 component
retains its integral causality after bicausal assignment [3]. From Figure 8 it readily
follows that the inverse of P takes the form

η̇ = −ũ1 + y1

ũ1 = y1 +
1

r
(m1ẏ1 +m2ẏ2 + k1η + u1 + u2)

ũ2 = y2 − y1 +
m2

k2

ÿ2 +
1

k2

u̇2,

(4.5)

where η denotes the internal dynamics. In case the reader is not familiar with bicausal
bond graphs, applying the constrained dynamics algorithm described in [11] to the
constraints y1 − x3/m1 = 0 and y2 − x4/m2 = 0 will yield the inverse system (4.5).
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The decoupling controller is found by enforcing the relation y = ȳ such that the
time derivatives of y in (4.5) are taken along trajectories of M . Doing so yields the
decoupling controller

˙̄x = [J̄(x̄) − R̄(x̄)]dH̄ − ḡ(x̄)ū

η̇ = −ũ1 +
1

m1

x̄3

u1 = ū1

u2 = ū2

ũ1 = −
k1

r
x̄1 −

1

r
sinh(x̄5) +

k1

r
η −

1

r
µ1

ũ2 = −
1

k2m2

x̄4 cosh(x̄5) + µ2

(4.6)

where µ1 and µ2 are newly introduced controls. Note that a copy ofM has been added
since the controller states depend on x̄, so that the order of dynamic compensation is
correlated to the dimension of the reference model.

Claim 4.1. The controller (4.6) induces port–Hamiltonian error dynamics, which
therefore admits a standard bond graph representation.

Proof. By uniqueness and existence of trajectories, each state of the system (4.1) has
an associated “error” variable ei(t) = xi(t) − xr

i (t) where xr
i (t) are reference signals.

Consider the relations

e1 = x1 − η, e3 = x3 − x̄3

e2 = x2 − x̄2 −
1

k2

sinh(x̄5), e4 = x4 − x̄4.
(4.7)

By using (4.1), (4.3) and (4.6) it can be verified that the error dynamics with coordi-
nates (e1, . . . , e4) on E = R

4 takes the form








ė1
ė2
ė3
ė4









=









0 0 1 0
0 0 −1 1
−1 1 −r 0
0 −1 0 0









dHe(e) −









0 0
0 1
1 0
0 0









µ

ψ =

[

0 0 1 0
0 1 0 0

]

dHe(e),

(4.8)

where µT = (µ1, µ2) and ψT = (ψ1, ψ2) are the new inputs and outputs respectively.
The Hamiltonian He : E → R is given by

He(e) =
1

2
(k1e

2

1
+ k2e

2

2
+

1

m1

e2
3

+
1

m2

e2
4
). (4.9)
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Observe that (4.8) is port–Hamiltonian, so that there exists a standard bond graph
representation [5]. In addition, it is seen that the structure of (4.8) is close to (4.1), so
it is readily seen that (4.8) admits the bond graph in Figure 9.

1

I1 : m1

0 1

Se

I2 : m2
C2 : 1/k2

1

C1 : 1/k1

R : r

Sf

µ1 ψ1 µ2ψ2

Fig. 9. Error dynamics

4.4. Solving the MMP

Now that the controller (4.6) has been found that solves the DDP, it remains to be
shown how the extended output ye(xe) can be stabilised to zero.

Claim 4.2. The equilibrium point e = 0 of (4.8) is globally asymptotically stable for
µ = 0, and, as a result, the controller (4.6) solves the MMP.

Proof. Let µ = 0 and write (4.8) as

ė = f(e) − gv (4.10)








ė1
ė2
ė3
ė4









=









0 0 1 0
0 0 −1 1
−1 1 0 0
0 −1 0 0









dHe(e) −









0
0
1
0









v, (4.11)

where v = rLgHe(e) and where Lg denotes the standard Lie derivative. The reason
for writing (4.8) in the form (4.11) is that this allows Theorem 10.9 in [11] to be used
for addressing the asymptotic behavior of the origin.

Next consider the relation

d

dt
He(e) = −

r

m2

1

e2
3

= −r[LgHe(e)]
2, (4.12)
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which follows from Figure 9 by equating the sum of all outgoing power flows to
zero. Global stability is therefore implied since He is positive definite and radially
unbounded.

The global asymptotic stability of the origin can now be established through a
standard LaSalle argument [10]. To this end, let Z be a compact set containing the
origin and let e(t) ∈ Z for all t ≥ 0. In addition, define the set

B = {e ∈ R
4 : LgHe(e) = 0}. (4.13)

From (4.12) it follows that the system (4.11) converges to the largest invariant set con-
tained in Z ∩B. Then, by taking (4.11) and (4.13) into account, Theorem 10.9 in [11]
concludes that {0} is the largest invariant set contained in Z ∩B. The origin is there-
fore globally asymptotically stable and the weak MMP objective |y(t) − ȳ(t)| → 0
for t→ ∞ is attained.

Even though the controller (4.6) with µ = 0 yields a globally decaying extended
output ye(xe), further control on µ is necessary to improve the response time. To this
end, consider the Se and Sf elements in Figure 9 and replace them by linear R compo-
nents, leading to the controls µ1 = d1ψ1 and µ2 = d2ψ2 for some positive damping
constants d1 and d2. When this control is applied, the new dissipation rate becomes

d

dt
He(e) = −d2k

2

2
e2
2
−
r + d1

m2

1

e2
3
. (4.14)

In view of Passivity–Based Control (PBC), it is known that damping injection alone
need not improve performance and that the energy often needs to be shaped to improve
response times [12]. Loosely speaking, PBC comes down to finding some desired
energy function such that its time derivative can be rendered non–positive through the
controls. But despite the conceptual clarity of PBC, it can be a difficult undertaking for
certain systems, especially in a nonlinear context. Nonetheless, no difficulties exist for
the simple example considered here since the bond graph in Figure 9 readily reveals
certain attainable energy shaping.

To see how the energy can be shaped by using Figure 9, observe that µ1 can be
associated with the output of C1 whereas µ2 can be associated with the output of I2.
Next consider the error dynamics (4.8) and its shaped Hamiltonian Hs(e) defined as

Hs(e) = He(e) +
1

2
(c1e

2

1
+ c2e

2

4
), (4.15)

where c1 and c2 are positive constants. Taking the time derivative along the trajectories
of (4.8) yields

d

dt
Hs(e) = −

1

m1

e3(µ1 − c1e1) − k2e2(µ2 + c2e4) −
r

m2

1

e2
3
. (4.16)

Hence, the controls µ1 = c1e1 and µ2 = −c2e4 render (4.16) non–positive.
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5. CONCLUDING REMARKS

Bicausal bond graphs were used to solve a physical model based disturbance decou-
pling problem. The inverted plant, in bicausal sense, was used to find those controls
that decoupled the model inputs. This methodology was based on the simple require-
ment that the relative degrees of the model inputs should not be strictly less than the
relative degrees of the plant inputs. It was seen that this relative degree condition was
likely to be fulfilled in case the reference model was geometrically “close” to the plant.
However, it was not attempted to derive general solvability requirements for the DDP
considered in the paper, so that more research on bicausal bond graphs in relation to
the DDP is required.

An important aspect of bicausal bond graphs, as applied in the paper, is that the
inverse dynamics is required to remain stable for arbitrary model outputs that are to
be tracked. This is not a mere shortcoming of bicausal bond graphs but an intrinsic
problem when inverse systems are used for tracking control designs. Also, it is known
that controllers based on inverse dynamics often lack certain robustness requirements.
It is our intention to address internal stability and robustness issues of bond graph
based controllers in future work.

Finally, it is important to note that the proposed bond graph methodology cannot be
guaranteed to work at all times, mainly because the MMP setup was rather heuristic in
nature, thereby retaining flexibility in case of unexpected difficulties. Nonetheless, the
authors believe that the paper presented a useful bond graph approach for physical
model based control using passivity and model matching techniques.
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