11 research outputs found

    High-frequency alternating current block using macro-sieve electrodes: A pilot study

    Get PDF
    Background and objective High-frequency alternating current (HFAC) can yield a rapid-acting and reversible nerve conduction block. The present study aimed to demonstrate the successful implementation of HFAC block delivery via regenerative macro-sieve electrodes (MSEs). Methods Dual-electrode assemblies in two configurations [dual macro-sieve electrode-1 (DMSE-I), DMSE-II] were fabricated from pairs of MSEs and implanted in the transected and subsequently repaired sciatic nerves of two male Lewis rats. After four months of postoperative nerve regeneration through the MSEs\u27 transit zones, the efficacy of acute HFAC block was tested for both configurations. Frequencies ranging from 10 kHz to 42 kHz, and stimulus amplitudes with peak-to-peak voltages ranging from 2 V to 20 V were tested. Evoked muscle force measurement was used to quantify the nerve conduction block. Results HFAC stimulation delivered via DMSE assemblies obtained a complete block at frequencies of 14 to 26 kHz and stimulus amplitudes of 12 to 20 V p-p. The threshold voltage for the complete block showed an approximately linear dependence on frequency. The threshold voltage for the partial conduction block was also approximately linear. For those frequencies that displayed both partial and complete block, the partial block thresholds were consistently lower. Conclusion This study provides a proof of concept that regenerative MSEs can achieve complete and reversible conduction block via HFAC stimulation of regenerated nerve tissue. A chronically interfaced DMSE assembly may thereby facilitate the inactivation of targeted nerves in cases wherein pathologic neuronal hyperactivity is involved

    Derivation and validation of a clinical prediction rule for upper limb functional outcomes after traumatic cervical spinal cord injury

    Get PDF
    IMPORTANCE: Traumatic cervical spinal cord injury (SCI) can result in debilitating paralysis. Following cervical SCI, accurate early prediction of upper limb recovery can serve an important role in guiding the appropriateness and timing of reconstructive therapies. OBJECTIVE: To develop a clinical prediction rule to prognosticate upper limb functional recovery after cervical SCI. DESIGN, SETTING, AND PARTICIPANTS: This prognostic study was a retrospective review of a longitudinal cohort study including patients enrolled in the National SCI model systems (SCIMS) database in US. Eligible patients were 15 years or older with tetraplegia (neurological level of injury C1-C8, American Spinal Cord Injury Association [ASIA] impairment scale [AIS] A-D), with early (within 1 month of SCI) and late (1-year follow-up) clinical examinations from 2011 to 2016. The data analysis was conducted from September 2021 to June 2022. MAIN OUTCOMES AND MEASURES: The primary outcome was a composite of dependency in eating, bladder management, transfers, and locomotion domains of functional independence measure at 1-year follow-up. Each domain ranges from 1 to 7 with a lower score indicating greater functional dependence. Composite dependency was defined as a score of 4 or higher in at least 3 chosen domains. Multivariable logistic regression was used to predict the outcome based on early neurological variables. Discrimination was quantified using C statistics, and model performance was internally validated with bootstrapping and 10-fold cross-validation. The performance of the prediction score was compared with AIS grading. Data were split into derivation (2011-2014) and temporal-validation (2015-2016) cohorts. RESULTS: Among 2373 patients with traumatic cervical SCI, 940 had complete 1-year outcome data (237 patients [25%] aged 60 years or older; 753 men [80%]). The primary outcome was present in 118 patients (13%), which included 92 men (78%), 83 (70%) patients who were younger than 60 years, and 73 (62%) patients experiencing AIS grade A SCI. The variables significantly associated with the outcome were age (age 60 years or older: OR, 2.31; 95% CI, 1.26-4.19), sex (men: OR, 0.60; 95% CI, 0.31-1.17), light-touch sensation at C5 (OR, 0.44; 95% CI, 0.44-1.01) and C8 (OR, 036; 95% CI, 0.24-0.53) dermatomes, and motor scores of the elbow flexors (C5) (OR, 0.74; 95% CI, 0.60-0.89) and wrist extensors (C6) (OR, 0.61; 95% CI, 0.49-0.75). A multivariable model including these variables had excellent discrimination in distinguishing dependent from independent patients in the temporal-validation cohort (C statistic, 0.90; 95% CI, 0.88-0.93). A clinical prediction score (range, 0 to 45 points) was developed based on these measures, with higher scores increasing the probability of dependency. The discrimination of the prediction score was significantly higher than from AIS grading (change in AUC, 0.14; 95% CI, 0.10-0.18; P \u3c .001). CONCLUSIONS AND RELEVANCE: The findings of this study suggest that this prediction rule may help prognosticate upper limb function following cervical SCI. This tool can be used to set patient expectations, rehabilitation goals, and aid decision-making regarding the appropriateness and timing for upper limb reconstructive surgeries

    Upper limb nerve transfer surgery in patients with tetraplegia

    Get PDF
    IMPORTANCE: Cervical spinal cord injury (SCI) causes devastating loss of upper extremity function and independence. Nerve transfers are a promising approach to reanimate upper limbs; however, there remains a paucity of high-quality evidence supporting a clinical benefit for patients with tetraplegia. OBJECTIVE: To evaluate the clinical utility of nerve transfers for reanimation of upper limb function in tetraplegia. DESIGN, SETTING, AND PARTICIPANTS: In this prospective case series, adults with cervical SCI and upper extremity paralysis whose recovery plateaued were enrolled between September 1, 2015, and January 31, 2019. Data analysis was performed from August 2021 to February 2022. INTERVENTIONS: Nerve transfers to reanimate upper extremity motor function with target reinnervation of elbow extension and hand grasp, pinch, and/or release. MAIN OUTCOMES AND MEASURES: The primary outcome was motor strength measured by Medical Research Council (MRC) grades 0 to 5. Secondary outcomes included Sollerman Hand Function Test (SHFT); Michigan Hand Outcome Questionnaire (MHQ); Disabilities of Arm, Shoulder, and Hand (DASH); and 36-Item Short Form Health Survey (SF-36) physical component summary (PCS) and mental component summary (MCS) scores. Outcomes were assessed up to 48 months postoperatively. RESULTS: Twenty-two patients with tetraplegia (median age, 36 years [range, 18-76 years]; 21 male [95%]) underwent 60 nerve transfers on 35 upper limbs at a median time of 21 months (range, 6-142 months) after SCI. At final follow-up, upper limb motor strength improved significantly: median MRC grades were 3 (IQR, 2.5-4; P = .01) for triceps, with 70% of upper limbs gaining an MRC grade of 3 or higher for elbow extension; 4 (IQR, 2-4; P \u3c .001) for finger extensors, with 79% of hands gaining an MRC grade of 3 or higher for finger extension; and 2 (IQR, 1-3; P \u3c .001) for finger flexors, with 52% of hands gaining an MRC grade of 3 or higher for finger flexion. The secondary outcomes of SHFT, MHQ, DASH, and SF36-PCS scores improved beyond the established minimal clinically important difference. Both early (\u3c12 months) and delayed (≥12 months) nerve transfers after SCI achieved comparable motor outcomes. Continual improvement in motor strength was observed in the finger flexors and extensors across the entire duration of follow-up. CONCLUSIONS AND RELEVANCE: In this prospective case series, nerve transfer surgery was associated with improvement of upper limb motor strength and functional independence in patients with tetraplegia. Nerve transfer is a promising intervention feasible in both subacute and chronic SCI

    Decompression of Lumbar Central Spinal Canal Stenosis Following Minimally Invasive Transforaminal Lumbar Interbody Fusion

    No full text
    STUDY DESIGN: This was a retrospective clinical series. OBJECTIVE: The objective of this study was to evaluate radiologic changes in central spinal canal dimensions following minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) with placement of a static or an expandable interbody device. SUMMARY OF BACKGROUND DATA: MIS-TLIF is used to treat lumbar degenerative diseases and low-grade spondylolisthesis. MIS-TLIF enables direct and indirect decompression of lumbar spinal stenosis, with patients experiencing relief from radiculopathy and neurogenic claudication. However, the effects of MIS-TLIF on the central spinal canal are not well-characterized. MATERIALS AND METHODS: We identified patients who underwent MIS-TLIF for degenerative lumbar spondylolisthesis and concurrent moderate to severe spinal stenosis. We selected patients who had both preoperative and postoperative magnetic resonance imaging (MRI) and upright lateral radiographs of the lumbar spine. Measurements on axial T2-weighted MRI scans include anteroposterior and transverse dimensions of the dural sac and osseous spinal canal. Measurements on radiographs include disk height, neural foraminal height, segmental lordosis, and spondylolisthesis. We made pairwise comparisons between each of the central canal dimensions and lumbar sagittal segmental radiologic outcome measures relative to their corresponding preoperative values. Correlation coefficients were used to quantify the association between changes in lumbar sagittal segmental parameters relative to changes in radiologic outcomes of central canal dimensions. Statistical analysis was performed for all patients and further stratified by interbody device subgroups (static and expandable). RESULTS: Fifty-one patients (age 60.4 y, 68.6% female) who underwent MIS-TLIF at 55 levels (65.5% at L4-L5) were included in the analysis. Expandable interbody devices were used in 45/55 (81.8%) levels. Mean duration from surgery to postoperative MRI scan was 16.5 months (SD 11.9). MIS-TLIF was associated with significant improvements in dural sac dimensions (anteroposterior +0.31 cm, transverse +0.38 cm) and osseous spinal canal dimensions (anteroposterior +0.16 cm, transverse +0.32 cm). Sagittal lumbar segmental parameters of disk height (+0.56 cm), neural foraminal height (+0.35 cm), segmental lordosis (+4.26 degrees), and spondylolisthesis (-7.5%) were also improved following MIS-TLIF. We did not find meaningful associations between the changes in central canal dimensions relative to the corresponding changes in any of the sagittal lumbar segmental parameters. Stratified analysis by interbody device type (static and expandable) revealed similar within-group changes as in the overall cohort and minimal between-group differences. CONCLUSIONS: MIS-TLIF is associated with radiologic decompression of neural foraminal and central spinal canal stenosis. The mechanism for neural foraminal and central canal decompression is likely driven by a combination of direct and indirect corrective techniques

    Mortality after surgery in Europe: a 7 day cohort study

    Get PDF
    Background: Clinical outcomes after major surgery are poorly described at the national level. Evidence of heterogeneity between hospitals and health-care systems suggests potential to improve care for patients but this potential remains unconfirmed. The European Surgical Outcomes Study was an international study designed to assess outcomes after non-cardiac surgery in Europe.Methods: We did this 7 day cohort study between April 4 and April 11, 2011. We collected data describing consecutive patients aged 16 years and older undergoing inpatient non-cardiac surgery in 498 hospitals across 28 European nations. Patients were followed up for a maximum of 60 days. The primary endpoint was in-hospital mortality. Secondary outcome measures were duration of hospital stay and admission to critical care. We used χ² and Fisher’s exact tests to compare categorical variables and the t test or the Mann-Whitney U test to compare continuous variables. Significance was set at p<0·05. We constructed multilevel logistic regression models to adjust for the differences in mortality rates between countries.Findings: We included 46 539 patients, of whom 1855 (4%) died before hospital discharge. 3599 (8%) patients were admitted to critical care after surgery with a median length of stay of 1·2 days (IQR 0·9–3·6). 1358 (73%) patients who died were not admitted to critical care at any stage after surgery. Crude mortality rates varied widely between countries (from 1·2% [95% CI 0·0–3·0] for Iceland to 21·5% [16·9–26·2] for Latvia). After adjustment for confounding variables, important differences remained between countries when compared with the UK, the country with the largest dataset (OR range from 0·44 [95% CI 0·19 1·05; p=0·06] for Finland to 6·92 [2·37–20·27; p=0·0004] for Poland).Interpretation: The mortality rate for patients undergoing inpatient non-cardiac surgery was higher than anticipated. Variations in mortality between countries suggest the need for national and international strategies to improve care for this group of patients.Funding: European Society of Intensive Care Medicine, European Society of Anaesthesiology
    corecore