14 research outputs found

    2D Nanomaterial-Based Hybrid Structured (Au-WSe2-PtSe2-BP) Surface Plasmon Resonance (SPR) Sensor With Improved Performance

    Get PDF
    As a promising optical method used in a variety of applications surface plasmon resonance (SPR) sensors are employed over a wide range of boundaries. This research proposes a highly sensitive SPR based sensor with a novel hybrid structure using transition metal dichalcogenides (e.g. WSe 2 , PtSe 2 ) along with black phosphorene (BP) through comprehensive numerical study. To analyze and evaluate the performances of the proposed sensor, the widely used transfer matrix method (TMM) was used. The performances of the sensor were measured in terms of reflectivity, sensitivity, detection accuracy (DA), and figure of merit (FOM). The sensor structure was optimized by changing different structural parameters of the hybrid architecture to obtain better performances. The results revealed that insertion of PtSe 2 with WSe 2 and BP over a gold layer of the conventional structure improved the performance of the sensor and the maximum sensitivity of the sensor was measured as 200 deg/RIU with a FOM of 17.70 RIU βˆ’1 . As well, the light penetration through the optimized sensor is investigated using the finite element method (FEM) based software. With this kind of high sensing capabilities, it may be convinced that the proposed sensor can be applied in different fields of biosensing to detect liquid biological and biochemical samples or analytes

    B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase

    Get PDF
    We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of Ξ±2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage

    Wild type SIAE is not expressed on the surface of human peripheral blood mononuclear cell (PBMCs).

    No full text
    <p>(A) Flow cytometric analysis of SIAE was performed on unfixed non-permeabilized human PBMC demonstrating the absence of SIAE on the surface of any cells in the lymphocyte gate. (B) The analysis of extracellular CD8 on unfixed, non-permeabilized PBMCs (left) and on fixed, permeabilized PBMCs (right) was used as a positive control for extracellular and intracellular staining. (C) SIAE is expressed intracellularly in peripheral blood mononuclear cells. In the left panel, cells were first stained extracellularly with anti-SIAE, washed, and then subjected to fixation and permeabilization prior to analysis. In the right panel, flow cytometry of PBMC for intracellular SIAE was performed on cells that were fixed, permeabilized and then stained with anti-SIAE (black), with an isotype control (blue) or with no antibodies (red).</p

    Frequency of the subset of catalytically defective <i>SIAE</i> variants genotyped by Hunt et al. [7].

    No full text
    <p>Frequency of the subset of catalytically defective <i>SIAE</i> variants genotyped by Hunt et al. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0053453#pone.0053453-Hunt1" target="_blank">[7]</a>.</p

    Detection of endogenous and overexpressed SIAE in the native state using a polyclonal anti-SIAE antibody.

    No full text
    <p>293T cells were transfected with Flag-tagged <i>SIAE</i> or left untransfected as a negative control. The IgG heavy chain (IgG HC) was seen in all immunoprecipitated samples. (A) Cell lysates were immunoprecipitated with anti-Flag antibodies and analyzed by Western blotting using polyclonal anti-SIAE. An SIAE-GST fusion protein was run in the third lane as a positive control. (B) Cell lysates in both panels were immunoprecipitated with anti-SIAE, IgG and anti-Flag. The left panel displays the use of anti-SIAE for Western blotting. The immunoprecipitated samples in this panel reveal both overexpressed and endogenous SIAE. Immunoprecipitated proteins in the right panel were revealed by an anti-Flag Western blot. (C) Endogenous SIAE levels were further characterized in the B cell lines BJAB (left) and Ramos (right) by flow cytometric analysis. The data are all representative of three independent experiments.</p

    Rare genetic variants of SIAE.<sup>§§</sup>

    No full text
    §§<p>The subjects from Surolia et al. (4) and Hirschfield et al. (5) include controls and autoimmune subjects of European ancestry. EVS (Exome variant server) data comprises unannotated American subjects (disease status is unknown) of European and African ancestry and is current as of June 20th 2012. Rare variants reported in both African-Americans and European-Americans are marked with a single asterisk (*nβ€Š=β€Š6500). Rare variants seen only in European-Americans or only in African-Americans are marked with double (**nβ€Š=β€Š4299) and triple asterisks (***nβ€Š=β€Š2201) respectively.</p>nf<p>These variants were found in dbSNP and/or 1000 genomes project but frequency data is not available. The dbSNP data is not ethnically stratified and was derived from the 1000 genomes project.</p

    Murine M89V Siae is functionally normal.

    No full text
    <p>Murine <i>Siae</i> cDNAs encoding WT, S127A, M89V, C196F and Q335P (murine equivalent of human <i>Q309P SIAE</i>) were introduced transiently into HEK 293T cells. Half of each lysate was immunoprecipitated with anti-Flag antibodies revealed in a Western blot assay (A, Lysate). The culture supernatants were also subjected to immunoprecipitation with anti-Flag antibodies to reveal the extent of secretion of each Siae variant at steady state (A, Supernatant). The other half of the cell lysate was similarly immunoprecipitated and examined for esterase activity, presented following normalization for lysate SIAE protein content (B). Each mutant was separately transfected and analyzed on three occasions. A representative experiment is shown. Error bars reflect esterase assays performed in triplicate in a single experiment.</p
    corecore