37 research outputs found

    [H2-Cryptand 222]2+(Br3 –)2 as a Tribromide-Type Catalyst for the Trimethylsilylation/Tetrahydropyranylation of Alcohols

    Get PDF
    A stable organic tribromide, [H2-cryptand 222]2+(Br3–)2 was utilized as an active catalyst for the trimethylsilylation/tetrahydropyranylation of alcohols. The method is general for the preparation of OH-protected aliphatic (acyclic and cyclic), aromatic, primary, secondary and tertiary alcohols.Keywords: [H2-cryptand 222]2+(Br3–)2, trimethylsilylation, tetrahydropyranylation, alcohols, tribromide, TMS-ether, THP-ethe

    Synthesis of Nano Magnetite Fe3O4 Based Vanadic Acid: A Highly Efficient and Recyclable Novel Nano-catalyst for the Synthesis of 4,4’-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ols)

    Get PDF
    Nano magnetic Fe3O4 based vanadic acid [MNPs@VO(OH)2] (average diameter 20–26 nm) has been synthesized by grafting VOCl3 on the Fe3O4 surface nanoparticles as a retrievable supporter to produce novel heterogeneous reusable solid acid with dual ability (Bronsted and Lewis acid) followed by stirring in the air. The resultant material was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) analysis and energy-dispersive X-ray spectroscopy (EDX). Significantly, the as-prepared [MNPs@VO(OH)2] exhibits a high catalytic activity in the synthesis of 4,4’-(arylmethylene)bis(3-methyl-1-phenyl-1H-pyrazol-5-ols). Additionally, the newly synthesized heterogeneous solid acid catalyst can be reused for several times without apparent loss of its catalytic activity. This work is licensed under a Creative Commons Attribution 4.0 International License

    Nano-Fe3O4/O2: Green, Magnetic and Reusable Catalytic System for the Synthesis of Benzimidazoles

    Get PDF
    Magnetic nano-Fe3O4 was applied in the presence of atmospheric air as a green, efficient, heterogeneous and reusable catalytic system for the synthesis of benzimidazoles via the reactions of o-phenylenediamine (1 eq) with aryl aldehydes (1 eq) in excellentyields (85–97 %) and short reaction times (30–100 min) with a proposed mechanism.Keywords: Benzimidazole, benzene-1,2-diamine, aldehyde, nano-Fe3O4, heterogeneous catalyst, magnetite, O

    Sulfonic acid functionalized imidazolium salts/ FeCl3 as novel and highly efficient catalytic systems for the synthesis of benzimidazoles at room temperature

    Get PDF
    AbstractIonic liquid 3-methyl-1-sulfonic acid imidazolium chloride/ FeCl3, as well as ionic liquid 1, 3-disulfonic acid imidazolium chloride/ FeCl3 catalytic systems, efficiently catalyzes the condensation of benzene-1, 2-diamine with aromatic aldehydes in the presence of atmospheric air as a green oxidant in ethyl acetate at room temperature to afford benzimidazole derivatives in high yields and in short reaction times. The reaction is also efficiently performed when carboxylic acids are used instead of aldehydes

    Facile preparation of a nanostructured functionalized catalytically active organosalt

    Get PDF
    We report a novel nanostructured organosalt, based on sulfonic acid functionalized pyrazinium {[H-pyrazine–SO3H]Cl2} that was synthesized and characterized by several techniques including Fourier transform infrared (FT- IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential thermal gravimetric (DTG) analysis, transmission electron microscopy (TEM), mass spectrometry (MS), proton NMR (1H NMR), carbon-13 NMR (13C NMR) and also electron diffraction (ED) patterns. Results proved that the unprecedented sulfonated pyrizinium organosalt is indeed nanostructured and highly crystalline as supported by TEM, ED and XRD studies, having an average nanoparticle size of 50 nm according to TEM micrographs. The novel nano- organocatalyst was proved to be an efficient catalyst in the synthesis of 1,2,4,5-tetrasubstituted imidazoles by a one-pot multi-component condensation of benzil, a broad range of aldehydes, primary amines and ammonium acetate at 90 °C under solvent-free conditions

    Ortho-aryl substituted DPEphos ligands : Rhodium Complexes Featuring C–H Anagostic Interactions and B–H Agostic Bonds

    Get PDF
    The synthesis of new Schrock–Osborn Rh(i) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)][BAr(F)(4)] [R = Me, OMe, (i)Pr; Ar(F) = 3,5-(CF(3))(2)C(6)H(3)], is described. Along with the previously reported R = H variant, variable temperature (1)H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C–H)⋯Rh anagostic interactions relative to the d(8) pseudo square planar metal centres, that also result in corresponding downfield chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C–H⋯Rh bonding interactions, the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer's approach, it is the topological positioning of the C–H bond with regard to the metal centre that is important. For [Rh(DPEphos–(i)Pr)(NBD)][BAr(F)(4)] addition of H(2) results in a Rh(iii) (i)Pr–C–H activated product, [Rh(Îș(3),σ-P,O,P-DPEphos-(i)Prâ€Č)(H)][BAr(F)(4)]. This undergoes H/D exchange with D(2) at the (i)Pr groups, reacts with CO or NBD to return Rh(i) products, and reaction with H(3)B·NMe(3)/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B–H⋯Rh 3c-2e agostic bond and a C–H⋯Rh anagostic interaction at the same metal centre

    Shed-Snakeskin valorisation into highly porous Co-containing nanocomposites for sustainable aqueous C–C bond formation reactions

    No full text
    A novel highly ordered network based on shed snakeskin has been employed as a sustainable/natural template, to fabricate efficient heterogeneous cobalt composite as catalyst by a nano-casting process. Characterization of the Cobalt nano-catalyst was investigated by several analysis methods including TEM, FESEM-EDS mapping, XRD, XPS, TGA, ICP, Raman, ATR, and N2 sorption and results verified the preparation of a nano-catalyst with highly ordered perforated structure, uniform pore size distribution, high surface area, and high stability. The nano-cobalt particles were uniformly disposed on the support with a particle size of about 100 nm, validated by various analysis methods. The catalytic performance of the synthesized catalyst was evaluated in the Suzuki-Miyaura reaction for Csp2–Csp2 bond formation in high yields (up to 97%) and excellent reactivity. The catalyst could also be recycled for at least 10 reaction runs without almost losing its activity (less than 10% after 10 runs). © 202

    General approach for electrochemical functionalization of glassy carbon surface by in situ generation of diazonium ion under acidic and non-acidic condition with a cascade protocol

    Full text link
    Immobilization of catechol derivatives on GC electrode surfaces can be performed by in situ generation and reduction of nitrocatechol. We present the oxidative nitration of catechol in the presence of nitrous acid followed by electrochemically reduction of the generated nitro aromatic group to the corresponding amine group and its conversion to diazonium cation at the electrode surface to yield a surface covalently modified with catechol. In this manner, some derivatives of catechol can be immobilized on the electrode surface. Whole of the process is carried out in Triethylammonium acetate ionic liquid as an inert and neutral medium (pH∼7.0). Surface coverage can be easily controlled by the applied potential, time and concentration of catechol. After modification, the electrochemical features of modified surface have been studied. Also modified GC electrode exhibited remarkable catalytic activity in the oxidation of NADH. The catalytic currents were proportional to the concentration of NADH over the range 0.01-0.80 mM. This condition can be used for modification of GC surfaces by various aromatic molecules for different application such as design of sensors and biosensors. © 2014 Elsevier Ltd. All rights reserved
    corecore