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Ortho-aryl substituted DPEphos ligands: Rhodium Complexes 

Featuring C–H Anagostic Interactions and B–H Agostic Bonds. 

James J. Race,a,b Arron L. Burnage,c Timothy M. Boyd,a,b Alex Heyam,b Antonio Martinez-Martinez,b Stuart A. Macgregor,c* 

Andrew S. Wellera*
 

The synthesis of new Schrock-Osborn Rh(I) pre-catalysts with ortho-substituted DPEphos ligands, [Rh(DPEphos-R)(NBD)]-

[BArF
4] [R = Me, OMe, iPr; ArF

 = 3,5-(CF3)2C6H3], is described. Along with the previously reported R = H variant, variable 

temperature 1H NMR spectroscopic and single-crystal X-ray diffraction studies show that these all have axial (C–H)···Rh 

anagostic interactions relative to the d8 pseudo square planar metal centres, that also result in corresponding downfield 

chemical shifts. Analysis by NBO, QTAIM and NCI methods shows these to be only very weak C–H···Rh bonding interactions, 

the magnitudes of which do not correlate with the observed chemical shifts. Instead, as informed by Scherer’s approach, it 

is the topological positioning of the C–H bond with regard to the metal centre that is important. For [Rh(DPEphos-

iPr)(NBD)][BArF
4] addition of H2 results in a Rh(III) iPr–C–H activated product, [Rh(k3,s-P,O,P-DPEphos-iPr’)(H)][BArF

4]. This 

undergoes H/D exchange with D2 at the iPr groups, reacts with CO or NBD to return Rh(I) products, and reaction with 

H3B·NMe3/tert-butylethene results in a dehydrogenative borylation to form a complex that shows both a non-classical B–

H···Rh 3c-2e agostic bond and a C–H···Rh anagostic interaction at the same metal centre. 

Introduction 

Diphosphine chelates that contain an ether linkage in their 

backbone, such as DPEphos and Xantphos, are an important and 

popular class of ligand that are used in synthesis and catalysis 

(Figure 1A). Initially developed as wide bite-angle, k2-P,P-cis-

coordinating, ligands for Rh-based hydroformylation catalysis,1, 

2 such ligands also have the ability to act in k3-P,O,P binding  

 

Figure 1 A) Xantphos and DPEphos ligands. B) Ortho-aryl substitution. 

modes often leading to hemilabile3 behaviour through 

reversible coordination of the ether linkage in response to 

changes in the metal coordination sphere or oxidation state. 

DPEphos is now widely used in a variety of catalytic settings,4-7  

and the vast majority of applications make use of the 

commercially available phenyl phosphine derivative. 

Modification of aryl phosphine ligands, more generally, by 

introducing steric bulk using ortho-substitution has been shown 

to promote enantioselectivity;8 regioselectivity;9 overall 

efficiency and catalyst stability;10-13 as well as aryl-group 

restricted rotation.14 Despite these potential advantages, ortho-

substituted variants of DPEphos (or Xantphos) are rare, Figure 

1B, and their use limited to a handful of examples.11, 15-19 

The cationic Schrock-Osborn [Rh(chelating-phosphine)]+ 

system is a widely used one in catalysis and synthesis,20, 21 and 

the active species are often accessed via hydrogenation of a 

suitable diene precursor, such as [Rh(chelating-

phosphine)(NBD)][anion] (NBD = norbornadiene), in a 

coordinating solvent such as acetone. We have particular 

interest in such systems with the DPEphos ligand, with regard 

to their use as pre-catalysts for amine-borane dehydro-

polymerisation,22, 23 alkene and alkyne hydroacylation,24-26 

 

Figure 2 A) [Rh(DPEphos-R)(NBD)][BArF4] systems used in this study. B) Schematic 

examples of the C–H anagostic interactions and 3c-2e B–H agostic bonds reported. 
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and alkyne carbothiolation,27 amongst other applications. We 

now report the synthesis of new Schrock-Osborn systems with 

ortho-substituted DPEphos ligands, including a new iPr-

substituted ligand (Figure 2). A detailed structural, variable-

temperature spectroscopic, and computational study reveals 

these to show well-defined examples of anagostic C–H···Rh 

interactions,28, 29 even for the previously-reported24 parent 

DPEphos complex; while a reactivity study demonstrates 

intramolecular C–H activation can occur after hydrogenation of 

the NBD ligand, that is dependent on the identity of the R-

group. Reaction of such a cyclometallated complex with 

H3B·NMe3 leads to a dehydrogenative borylation and a complex 

that features both non-classical B–H 3c-2e agostic28 and 

anagostic C–H structural and spectroscopic features, Figure 2B. 

This serves to highlight the key differences between anagostic 

and agostic motifs of X–H bonds with d8-metal centres in a 

single complex.  

In describing the anagostic interactions in these systems we 

borrow from the analysis of Scherer30 who showed that axial 

positioning of a C-H bond at a square-planar d8 metal centre 

orientates it over a region of charge concentration. When the 

complex is then placed in a magnetic field (i.e., the NMR 

experiment) induced current density at the metal results in 

magnetic field effects that cause the signature downfield 

chemical shift of the anagostic proton. In our analysis we find 

that descriptors that define the bonding between the Rh 

centres and C–H bonds show no correlation with either the 

observed or computed chemical shifts, supporting Scherer’s 

topological, induced current, description for anagostic 

interactions. 

Results and Discussion 

Synthesis and Solid-State Structures of the NBD-Complexes. 

The ortho-substituted DPEphos-R ligands used in this study are 

shown in Figure 3: R = H, 1-H; Me, 1-Me; OMe, 1-OMe; and iPr, 

1-iPr. Ligands 1-H and 1-Me are commercially available, 1-OMe 

was prepared using the reported procedure.17 DPEphos-iPr, 1-
iPr, is a new ligand and was prepared as an analytically pure 

white solid from reaction of the corresponding 

dichlorophosphine with ortho-isopropyl phenyl lithium (ESI). 

The solid-state structure is shown in Figure 3. In the room 

temperature 31P{1H} NMR spectrum a single 31P environment is 

observed at d –37.6.  

 

Figure 3 DPEphos–R ligands used in this study. Crystallographically determined 

structure of 1-iPr. Ellipsoids shown at the 50 % probability level. Hydrogen atoms 

omitted for clarity. See ESI for full details. 

 

Scheme 1. Synthesis of the new Rh-complexes. 

Interestingly, the room temperature 1H NMR spectrum is rather 

simple with only a single (integral 24 H) environment observed 

for the iPr- methyl groups – despite their diastereotopic nature 

in the solid-state structure. This suggests inversion at P is a low 

energy process for free 1-iPr,31 which has been shown to be the 

case for other bulky iPr-substituted tris-aryl phosphines.32 

 The target, Schrock-Osborn, [Rh(DPEphos-R)(NBD)][BArF
4] 

complexes [ArF
 = 3,5-(CF3)2C6H3] were prepared by addition of 

the DPEphos-R ligands to the appropriate Rh-precursor. 

[Rh(DPEphos-H)(NBD)][BArF
4], 2-H, has already been reported 

to be formed from addition of 1-H to [Rh(NBD)Cl]2, using 

Na[BArF
4] to extract the halide (Scheme 1).24 A slightly refined 

method, using 1,2-F2C6H4 as a solvent, was used to make 

[Rh(DPEphos-R)(NBD)][BArF
4], R = H, 2-H; Me, 2-Me; and OMe, 

2-OMe. For the bulkier ligand, 1-iPr, [Rh(NBD)2][BArF
4] was used 

to make 2-iPr. The new complexes were isolated in moderate to 

good yield (65 to 85%), as crystalline, solids. Figure 4 shows the 

solid-state structures of the cations in these new complexes as 

determined by single-crystal X-ray diffraction. While 2-H is 

known,24 the solid-state structure had not been reported, and 

so is included here. All the cations have pseudo square planar 

Rh(I) centres, with the NBD ligands binding h2h2, and cis-k2-P,P 

DPEphos-R ligands. Bond lengths and angles are generally 

unremarkable (ESI). The closet Rh···O distance in 2-OMe is 

3.081(3) Å from an axially-orientated methoxyl group – which is 

clearly non-bonding. 

Notable differences, however, come from the relative 

orientation of the DPEphos-R diphenylether backbone, Figure 

4B. For 2-H, 2-Me and 2-OMe this lies above the P–Rh–P plane 

sitting in an asymmetric envelope-like conformation.33 If 

retained in solution this would give the cation C1 symmetry (i.e. 

none). The iPr groups in 2-iPr force a, non-crystallographic, C2-

axis. Reflecting the increase in steric bulk, the Rh–P distances 

are ~0.1 Å longer and the P–Rh–P bite angle ~3º wider in 2-iPr 

compared with the other complexes (Table S2). In all cases the 

ether oxygen atom sits distant from the Rh-centre [3.498(8)-

3.5545(18) Å]. For all, there are aryl or methyl C–H bonds in the 

ortho-aryl groups that are axially positioned above the Rh-

square plane, i.e. potential anagostic interactions. These are 

discussed in detail after the solution NMR spectroscopic data 

have been presented that signal this orientation.  
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Figure 4. A) Solid-state structures of the cations in 2-H, 2-Me, 2-OMe and 2-iPr as determined by single-crystal X-ray diffraction. Displacement ellipsoids are shown at 
the 50 % probability level. Hydrogen atoms and [BArF4]– anions not shown. Selected DPEphos-R and NBD groups shown as wireframe. B) End-on view highlighting the 
relative orientation of the DPEphos backbones. Bond lengths and angles are given in the ESI (Table S2).

Variable Temperature Solution NMR Spectroscopy and the 

Identification of Anagostic Interactions in Solution and Solid-State  

Room temperature NMR spectra of the Rh-NBD complexes 

indicate fluxional behaviour in solution that is dependent on the 

identity of the phosphine ancillary group. For 2-H24 a very 

simple, sharp, set of signals is observed for the room 

temperature 1H NMR spectrum (i.e., a single NBD alkene 

environment), along with a single environment in the 31P{1H} 

NMR spectrum. Together these indicate time averaged C2v 

symmetry in solution. For 2-Me broad signals are observed in 

both the 1H NMR and 31P{1H} NMR spectra, with the latter 

showing two species: one with a single 31P environment and one 

with inequivalent environments. For 2-OMe the situation is 

similar, except that only one – very broad – environment is 

observed in the 31P{1H} NMR spectrum. These data, in 

comparison with the solid-state structures, suggest fluxional 

processes are operative in solution that are fast for 2-H, but 

slower for 2-Me and 2-OMe and also involve observable 

equilibrium populations of different conformers. For bulky 2-iPr 

the NMR spectra are again sharp, but now indicate C2, rather 

than C2v, symmetry for the NBD (four signals) and DPEphos-iPr 

(two methine, four CH3 and one 31P environment) ligands via 1H 

and 31P{1H} NMR spectroscopy. In the low-field region of the 1H 

NMR spectrum of 2-iPr a distinct, relative integral 2H, signal is 

observed at d 9.34 that shows coupling to P and H [J(PH) = 17, 

J(HH) = 7 Hz], Figure 5A. There is no evidence for Rh–H coupling. 

 While such downfield shifted signals are not observed in the 

room temperature 1H NMR spectra of the other complexes, 

progressive cooling to much lower temperatures reveals 

similarly shifted peaks and corresponding changes in the 31P 

NMR spectra. For 2–H cooling to 183 K (acetone-d6) results in 

very broad signals in the 1H NMR spectrum, suggesting the low 

temperature limit had not been reached. By using CDCl2F34 as a 

solvent a 1H NMR spectrum could be obtained at 140 K in which 

a low-field shifted, albeit broad, signal (2 H) is observed at 

d 8.32. For 2-Me and 2-OMe similar behaviour is observed on 

cooling but now 243 K and 203 K, respectively, are sufficient to 

reveal downfield-shifted aromatic resonances.35 However, 

these integrate to only 1H each, at d 10.27 and d 9.53 

respectively (in acetone-d6, 183 K). 2-Me also shows a 

downfield shifted methyl resonance at d 3.68 (3 H, 183 K). For 

2-Me and 2-OMe four different NBD alkene environments are 

observed in the low temperature 1H NMR spectra, along 

 
Figure 5. A) Low-field (d 7.6-10.5) region of the 1H NMR spectra for the 

[Rh(DPEphos-R)(NBD)][BArF4] complexes showing the shifted signals (temperature 

and solvent as noted) B) 31P{1H}NMR spectra for 2-H and 2-iPr at various 

temperatures. C) Proposed fluxional process. 
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Figure 6. Views of the NBD complexes highlighting the close C–H···Rh, anagostic, interactions with selected structural markers. Diphenyl ether linkages on the DPEphos-
R ligands are not shown. Hydrogen atoms are placed in calculated positions.

with two mutually coupled signals in the corresponding 31P{1H}  

NMR spectra [e.g. J(PP)= 28 Hz 2-Me] that also couple to 103Rh. 

For 2-H these signals are broader even at 140 K (fhwm = 80 Hz) 

and the 31P-31P coupling is not resolved, Figure 5B. These data 

point to fluxional processes that are arrested at low 

temperature to give structures that are similar to those 

determined in the solid-state, i.e. an envelope-like 

conformation of the DPEphos-R ligand. On increasing the 

temperature, conversion between enantiomeric C1 forms via a 

C2 intermediate is proposed, Figure 5C. This has been modelled 

for 2-Me using line-shape analysis (see ESI). Related ring-

flipping processes in POP-type ligands have been reported 

previously.36, 37 For 2-iPr there is no change on cooling (Figure 

5B), the ~C2-symmetric solid-state structure is retained in 

solution at room temperature. It is thus not fluxional. These 

observations are consistent with relative steric bulk of the o-

substituents: 1-H < 1-Me ~ 1-OMe << 1-iPr. Downfield chemical 

shifts in the 1H NMR spectrum can be diagnostic of anagostic 

C-H interactions, which are located above a region of charge 

concentration at a d8 metal centre, i.e. an occupied dz2 

orbital.30, 38-40 These are distinct from agostic,28 3c-2e, bonds 

that are characterised by donation from a C–H bond into an 

unoccupied metal orbital and upfield chemical shifts in the 1H 

NMR spectrum. The fluxional processes operating at room 

temperature mean these characteristic signals are only resolved 

on cooling, apart from for 2-iPr in which the static structure 

makes them persistent. We next turn to inspecting the solid-

state structures of the NBD adducts more closely to identify 

such anagostic interactions: Figure 6 and Table 1. 

 All four complexes show relatively close C–H···Rh 

approaches from an ortho C(aryl)–H group in the phenyl 

phosphine (H atoms in calculated positions, see Table 2 for 

computational analysis). For 2-H there are two, albeit long (~2.9 

Å); for 2-iPr there are also two, but these are considerably 

shorter (~2.5 Å); while 2-OMe has a single close C(aryl)–H···Rh 

distance (~2.9 Å). 2-Me shows two different types: C(aryl)–

H···Rh (2.57 Å), and C(Me)–H···Rh (2.63 Å). The phenyl rings 

associated with these C(aryl)–H···Rh contacts generally align 

with the associated Rh–P vector (C–H/Rh–P torsion angles, Ψ, 

8.2 to 1.3º) and the C–H···Rh angle (θ) is rather open (122.6–

144.2º). Although 2-H has one phenyl ring twisted away from 

this (Ψ = 42.0, θ = 114.7º), the Rh···H distance is similar. The 

number of these close C–H···Rh distances correlates well with 

relative integrals of the downfield shifted signals observed in 

the 1H NMR spectra: 2-H, 2H; 2-Me, 1H (aryl), 3H (methyl); 2-

OMe, 1H; and 2-iPr, 2H. As there is no crystallographically 

imposed symmetry in the solid-state we assume any equivalent 

environments observed in solution arise from very low energy 

fluxional processes. The changes in chemical shifts of these C–H 

protons due to the presence of the Rh(I) centre have been 

experimentally determined by comparison with the free 

ligands, as aided by 1H/1H COSY, HMBC and HSQC experiments. 

While all shift downfield, the variation observed shows no 

strong correlation with any of the structural descriptors 

discussed, as detailed in Table 1. However, in a more general 

sense, for all the complexes the angle formed between the 
Rh!H vector and the RhP2 plane (φ) shows the C–H proton is 

orientated towards the apical position (which at the limit φ = 

90º). Thus, following Scherer’s analysis,30 the positioning of the 

C-H bond over a region of charge concentration (occupied d 

orbitals, φ approaching 90º) induces the downfield chemical 

shift in the NMR spectrum that is diagnostic of an anagostic 

interaction. In contrast, orientation of a C-H bond toward a 

charge depleted region (a vacant orbital in the metal 

coordination plane, φ approaching 0º) results in upfield-shifted 

signals that are characteristic of agostic, 3c-2e, bonding. Such 

demarcations are not always clear-cut, however, as axial sites 

can also display Lewis-acidic character.29, 41  

 While with hindsight it is not surprising that the most 

sterically bulky ligand, DPEphos–iPr, enforces an anagostic 

interaction at room temperature, the presence of both aryl  

Table 1. Structural and Spectroscopic Data that Describe the C–H···Rh Interactions in the 

DPEphos-R Complexes. 

 2-H 2-Me 2-OMe 2-iPr 

ϴ (º)a 114.7, 122.6 129.8, (144.2)c 121.6 132.7, 135.6 

Ψ (º)a  42.0, 1.7 1.3c –6.2 –1.4, –8.2 

Φ (º)a 63.1, 58.0 64.3, (69.3)c 63.9 64.3, 64.3 

Rh!H1 (Å) 2.92, 2.97 2.57, (2.63)c 2.88 2.58, 2.47 

δ(H) (ppm) 8.32 9.97, (3.56)c 9.19 9.14 

Δδ(H) (ppm)b 
+0.99 to 

1.11d 
+2.82, (+1.3)c +2.34 +1.85 

J(PH) (Hz) broad 17 17 18 

J(HH) (Hz) broad 8 7 8 

a See Figure 6 for definitions. b Difference in chemical shift of H1 (500 MHz, CD2Cl2, 

203 K) compared with free ligand (CD2Cl2, 295 K). c Numbers in parenthesis 

associated with methyl groups. d  The ortho phenyl protons in DPEphos-H could not 

be unambiguously identified.  

PP

H

Rh

∠C–H–Rh

∠H–Rh/RhP2Rh–P/C–H torsion

D(H–Rh)/Å

θ/º

φ/ºψ/º

plane

P2

P1 Rh

H1
C1

P2

P1

Rh

H1

C1

H47a

C47

P2

P1
Rh

H1
C1

H32
C32

2-iPr2-Me 2-OMe2-H

H1

C1

H36a

C36

P2

P1Rh



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

 

Figure 7. Examples of previously reported anagostic C–H···M interactions.  

and, rarer,42, 43 alkyl anagostic interactions in 2-Me is perhaps 

more notable. What was unanticipated is that in the parent 

DPEphos-H complex such interactions are also present – albeit 

only observed at very low temperature in solution. Similar 

properties (C–H···M, 2.23–3.01 Å, low-field chemical shifts and 

apical approaches of C–H groups to d8 metal centres), have 

been discussed by others, including: Bergman,44 Dyker,42 

Fairlamb,45 and Sabo-Etienne,38 Figure 7.  

 So, while the presence of anagostic C–H···Rh(I) interactions 

has been demonstrated here experimentally by both structural 

and spectroscopic studies, the correlation between the 

observed chemical shifts and measured structural descriptors is 

less obvious. We thus turned to a computational analysis to 

examine the nature of these anagostic C–H···Rh(I) interactions 

more closely. 

Computational Studies: Structures, Bonding and Chemical Shifts. 

Computed metrics for the Rh!H-C moieties in the isolated cations 

of all four DPEphos-R complexes are provided in Table 2. Geometries 

for these analyses are based on the experimental structures with the 

heavy atoms fixed at their observed positions and the H atoms 

optimised. The calculated Rh!H distances are therefore ca. 0.1 Å 

shorter (and the C-H bonds ca. 0.15 Å longer) than those determined 

experimentally. Figure 8 displays the molecular graph, the topology 

of the Laplacian and a non-covalent interaction (NCI) plot for the 

cationic portion of 2-Me, [2-Me]+, where we have chosen to  

 
Figure 8. (A) Molecular graph of the [2-Me]+ cation showing the contour plot of 
the Laplacian in the H47aRhH1 plane. Bond critical points and ring critical points are 
shown as green and pink spheres respectively; blue contours show areas of charge 
depletion, red contours charge accumulation; (B) Non-covalent interaction plot 
highlighting weak stabilising Rh! H1 and Rh!H47a interactions; the NBD ligand is 
removed for clarity and the isosurface is generated for s = 0.3 au and −0.07 < ρ < 
0.07 au. Key shows isosurface colouring. 

showcase the system featuring both aryl- and alkyl-C-H!Rh 

anagostic interactions. The presented data are representative of all 

four cations and equivalent figures for the remaining systems are 

provided in the Supporting Materials. The bond critical point (BCP) 

metrics indicate the presence of weak Rh!H-C interactions with 

low BCP electron densities, r(r), small positive values for the 

Laplacian and small, positive charges on the anagostic H atoms. In [2-

Me]+ the Rh!H47a (alkyl) interaction is slightly weaker than the 

Rh!H1 (aryl) interaction, although this likely reflects the longer 

Rh!H47a distance rather than any intrinsic difference. Plots of r(r) 

and Ñ2r(r) against the computed Rh!H distances provide excellent 

correlations (Fig. S42-3) and the strongest Rh!H-C interactions are 

seen in [2-iPr]+. This is mirrored in the NBO 2nd order perturbation 

analyses that show the major component, Rh ® s*C-H donation, to 

increase upon shortening the Rh!H distance. sC-H ® Rh donation 

shows a similar trend but this is minimal, even in [2-iPr]+. This weak 

Rh!H-C interaction therefore shares some characteristics of a H-

bond46, 47 and this is also evident in the NCI plot of [2-Me]+ where 

light turquoise (i.e. weakly stabilising) regions are seen along the 

Rh!H1 and Rh!H47a vectors.  

Table 2. Computed metrics for the C–H···Rh Interactions in the DPEphos-R Complexes.a  

   QTAIM (au) NBO Donor-Acceptor Interactions (kcal/mol) NMR/ppm 

Cation Bond Path Distance/Å r(r) Ñ2r(r) qH sC-H ® Rhb Rh ® s*C-H
c d(H)calc

d  d(H)exp 

[2-H]+ 
Rh!H1 

Rh!H36a 

2.83 

2.87 

0.012 

0.011 

+0.036 

+0.030 

0.031 

0.028 

0.57 

0.52 

1.33 

1.22 

+9.5 

+9.1 

 +8.32 

[2-Me]+ 
Rh!H1 

Rh!H47a 

2.45 

2.51 

0.022 

0.020 

+0.053 

+0.045 

0.026 

0.027 

0.69 

0.49 

4.38 

4.29 

+10.6 

+6.0 (+3.9e) 

 +9.97 

+3.56 

[2-OMe]+ Rh!H1 2.79 0.013 +0.035 0.047 0.33 1.91 +9.6  +9.19 

[2-iPr]+ 
Rh!H1 

Rh!H32 

2.33 

2.45 

0.026 

0.021 

+0.059 

+0.050 

0.024 

0.027 

2.08 

1.71 

8.98 

6.70 

+9.9 

+9.8 

 +9.14 

a QTAIM and NBO data are based on the experimental crystal structures; computed chemical shifts are based on the lowest energy conformations.45 bSum of donation 

into the two s*Rh-P NBOs. c Sum of donation from the Rh lone pairs and sRh-P bonding NBOs. d Data are weighted averages taking into account all low energy 

conformations. e Average of all three Me hydrogens. See Supporting Materials for full details.  
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The Laplacian plot around the Rh atom in [2-Me]+ indicates that both 

the Rh!H1 and Rh!H47a bond paths pass through regions of axial 

charge concentration. Thus both C-H bonds are oriented towards 

areas of charge accumulation at Rh, consistent with the downfield 1H 

anagostic chemical shift.30 Computed 1H NMR chemical shifts 

reproduce these downfield shifts for all four cations. In this case the 

calculations were performed on the fully optimised structures to 

model behaviour in solution. In general, the computed chemical 

shifts lie further downfield than the experimental values. The largest 

discrepancy is for [2-H]+ and this may reflect that the low 

temperature limit had not been achieved experimentally. In addition, 

conformational searching revealed additional low energy structures 

that also contribute to the final observed chemical shift.48 For [2-

Me]+ the static structure in the calculations reveals the large 

downfield shift associated with the Me proton H47a (dcalc = +6.0 ppm) 

while the average of all three Me protons is 3.9 ppm, in good 

agreement with experiment (d 3.56) where the methyl group will be 

freely rotating leading to a weighted-average chemical shift. 

Interestingly, although there is a clear relationship between the 

Rh!H-C distance and the computed bonding metrics, no such 

correlation is seen with the computed chemical shifts of the 

anagostic hydrogens (Table 2). Thus, the nature of the Rh!H-C 

interaction does not relate to the extent of the downfield 

chemical shift, suggesting the orbitals involved are not 

responsible for the chemical shift. Instead the situation is more 

consistent with Scherer’s observations30 that it is the spatial 

positioning of the anagostic H above the d8 square-planar metal 

coordination plane (i.e. φ) together with the complex interplay 

of induced current densities that are responsible for the precise 

chemical shift observed. Thus while the computation of a weak 

M!H bond path and weak Rh®s*C-H donation are usually 

features that are associated with an anagostic interaction,40 

they are not in themselves responsible for the signature 

downfield chemical shifts observed in NMR spectra that signal 

the positioning of the C–H bond relative to the metal centre. 

Reactivity: Hydrogenation of NBD, Reversible C–H activation, and a 

Complex with both Anagostic and B–H Agostic Motifs. 

The Schrock-Osborn [Rh(DPEphos-R)(NBD)]+ complexes are 

precatalysts for a variety of important transformations.20 

Activation is often by hydrogenation in situ in a coordinating 

solvent, for example acetone to form [Rh(DPEphos-

R)(acetone)2]+ (3-R) and free norbornane (NBA).9, 24, 49 

[Rh(DPEphos-H)(acetone)2][BArF
4]25 has been reported using 

this method, and we now extend this methodology to the 

complexes 2-Me, 2-OMe and 2-iPr. The product of these 

reactions is dependent on the R-substituent, with more 

electron donating/bulkier substituents resulting in Rh(III) 

hydride products.50 

Addition of H2 to yellow acetone-d6 solutions of 2-Me or 2-

OMe, followed by degassing, results in the hydrogenation of 

bound NBD and the in situ formation of the red acetone 

adducts49 3-Me and 3-OMe (Scheme 2). These adducts could 

not be isolated and presented broad signals at room  

 

Scheme 2. Hydrogenation of NBD adducts 2-R. [BArF4]– anions not shown.  

temperature in their 1H and 31P NMR spectra. Free NBA was 

observed to be formed by 1H NMR spectroscopy. For R = Me, if 

the solution is not degassed post H2 addition, the yellow Rh(III) 

dihydride complex, [Rh(DPEphos-Me)(H)2(acetone)][BArF
4], 4-

Me, is formed quantitatively. Degassing results in loss of H2 and 

the formation of red 3-Me. Complex 4-Me is characterised at 

298 K by the observation in the 1H NMR spectrum of a broad, 

relative integral 2H, hydride resonance at d –19.5 in the region 

characteristic of hydride ligands, and a broad signal in the 
31P{1H} NMR spectrum at d 26. Cooling to 183 K reveals sharper 

signals, and thus that a fluxional process is occurring, likely 

reversible dissociation of acetone.51, 52 A major and a minor 

species are observed (5:1 ratio) at low temperature, both with 

inequivalent hydrides [ca. d –18 and –20] that integrate in total 

to 2H and show coupling to Rh, P and the other hydride [dddd]. 

In the 31P{1H} NMR spectrum signals are observed that show 

large J(PP) coupling [ca. 340 Hz] and small J(RhP) [ca. 117 Hz] – 

identifying them as being in a trans arrangement on a Rh(III) 

centre.53 These data, alongside selective decoupling 

experiments (ESI), allow a structure to be assigned for 4-Me as 

shown in Scheme 2, that is similar to [Rh(k3-P,O,P 

Xantphos)(H)2(acetone)][BArF
4].51 The two different species 

observed at low temperature are assigned to conformers arising 

from different orientations of the ortho-Me substituted phenyl 

groups that undergo restricted P–C rotation.10, 14  

For the DPEphos-iPr ligand the product of hydrogenation in 

acetone is different, and a Rh(III)-hydride iPr-cyclometallated 

product is formed, [Rh(k3,s-P,O,P-DPEphos-iPr’)(H)][BArF
4] 4-iPr 

[DPEphos-iPr’ = (o-iPr-C6H4)2P(C6H4)O(C6H4)P(o-iPr-C6H4)(o-

(CH2CH3CH)C6H4)]. 4-iPr is fluxional in solution, and is unchanged 

when free H2 is removed under vacuum. At room temperature 

in acetone-d6 solution the formation of 4-iPr is signalled by a, 

integral 1H, environment observed at d –19.81 [dt, J(RhH) = 29, 

J(PH) 15 Hz], an alkyl region that shows a complex set of 

overlapping resonances (further complicated by the presence of 

free NBA), and a very broad 31P{1H} NMR spectrum [d 20.8]. 

Warming to 338 K sharpens the 31P NMR spectrum, so a broad 

apparent doublet is observed at d 21.7;54 while the 1H NMR 

spectrum at this temperature retains a sharp multiplet hydride 

signal. There is some decomposition on warming. Progressive 

cooling moves though a coalescence regime, ~243 K, so that at 
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183 K a sharp 31P{1H} NMR spectrum is observed that shows 

three major sets of inequivalent phosphine environments, 

between d 4 and d 41, all with trans P–P coupling [J(PP) ~ 360 

Hz] and J(RhP) coupling indicative of a Rh(III) centre [J(RhP) = 

112 – 121 Hz].53 In the 1H NMR spectrum (183 K) at least three 

different hydride multiplet environments are observed 

between d –19.40 and –19.95 [J(RhH) = 29-31 Hz from selective 

decoupling], that combined integrate to a single proton.55 No H-

H coupling is observed, which is different from dihydride 4-Me.  

Collectively these NMR data suggest complex 4-iPr is formed 

as a mixture of at least three iPr-cyclometallated species, that 

interconvert on the NMR timescale at room temperature by a 

process that does not break and exchange the Rh–H bond. 

Reversible reductive elimination and exchange with other C–H 

groups in the ligand would be expected to result in loss of the 

hydride signal and associated coupling if it occurred on the NMR 

timescale.56-60 We thus propose that this fluxional process is 

associated with a restricted P–C rotation10, 14 of the bulky iPr-

aryl groups that leads to different, but exchanging, rotamers61 

of the same ortho-metalled isomer. In the absence of a single-

crystal X-ray structure we cannot definitively assign a structure 

to 4-iPr as one where the iPr methine or methyl group has 

undergone C–H activation, and both motifs are known.62 While 

we cannot unequivocally rule out a ground-state structure 

arising from methine-iPr activation, we favour methyl activation 

as the hydride peaks correlate to methyl, aromatic and methine 

signals in the low temperature NOESY spectrum (ESI). Very 

similar spectra are obtained on hydrogenation in 1,2–F2C6H4 or 

o-xylene solvent (ESI), meaning there is no evidence for 

significant solvent coordination at the Rh(III) centre, or agostic 

interactions, the latter albeit expected to be weak.63, 64 The 

hydride is located trans to the coordinated oxygen on the basis 

of the observed chemical shift.65 

 While reversible cyclometallation of 4-iPr is not observed on 

the NMR timescale, it does occur on the laboratory timescale as 

probed by a variety of experiments, Schemes 3 and 4:  

(i) Addition of NBD quantitatively reforms 2-iPr on time of 

mixing. 

 

Scheme 3. H/D exchange in 4-iPr and trapping with NBD to form 2-iPr-Dx. Inset 

shows the distribution of isotopologues of 2-iPr-Dx as measured by ESI-MS and 

analysed using an in-house Python script. [BArF4]– anions not shown. 

 
Scheme 4. Reaction of 4-iPr with CO, and solid-state structure of 5-iPr highlighting 
the position of anagostic contacts. [BArF4]– anions not shown. Displacement 
ellipsoids are shown at the 50% probability level. Rh1–P1, 2.3145(7); Rh1–P2, 
2.3027(8) ; Rh1–C37, 1.819(4); Rh1–O2, 2.128(3); Rh–H38, 2.821; Rh–H47, 2.627; 
P1–Rh1–P2, 162.41(4); O2–Rh1–C1, 177.0(1). 

(ii) Repeated charging of an o-xylene solution of 4-iPr over two 

weeks with D2 results in a significant, but slow, reduction in 

intensity of the hydride signal and the concomitant appearance 

of signals in the hydride and alkyl regions of the 2H NMR 

spectrum. Subsequent addition of NBD results in the formation 

of 2-iPr-Dx, that could be reliably analysed using electrospray 

ionisation mass spectrometry (ESI-MS) and NMR spectroscopy. 

Processing of the resulting isotope pattern for the cation in 2-
iPr-Dx (ESI) reveals a distribution of isotopologues, x = 0 to 14, 

centred around x = 6 to 8 (Scheme 3). That both methyl and 

methine C–H activation occur is demonstrated in the 1H NMR 

spectrum of 2-iPr-Dx that shows a reduction in intensity for 

these environments, corresponding to 20% D and 40% D 

incorporation respectively (4.8 D and 1.6 D respectively). No 

H/D exchange is observed in the C–H bonds of the aryl groups.66 

4-Me undergoes no exchange under the same conditions.  

(iii) Addition of CO to 4-iPr results in the quantitative formation 

of the Rh(I) complex [Rh(k3-P,O,P-DPEphos-iPr)(CO)][BArF
4], 5-

iPr, the structure of which has been determined by single- 

crystal X-ray diffraction (Scheme 4). Complex 5-iPr has two 

anagostic C–H···Rh interactions, similar to 2-iPr, but now from 

two methine C–H groups (H38, 2.821 Å, φ = 59.0º; H47, 2.671 Å, 

φ = 64.0º). In solution at 298 K the cation displays time averaged 

C2v symmetry by NMR spectroscopy. Two methine 

environments are observed in the 1H NMR spectrum, one 

shifted significantly downfield from the other: d 4.74 and 3.10 

(2 H integral each), and the former signal is assigned to the 

 

Scheme 5. A) Possible intermediates for the formation of Rh(I) complexes, and 

H/D exchange starring from 4-iPr. B) Proposed mechanism for H/D exchange. 
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anagostic pair H38/H47 (dcalc = 4.6 ). 

The reaction of 4-iPr with CO and NBD on time of mixing 

indicates that this Rh(III) complex acts as a “masked”57 source 

of Rh(I). While this suggests a kinetically accessible Rh(I) 

intermediate could be in equilibrium with 4-iPr (I, Scheme 5), 

invoking this as the only accessible intermediate would not 

account for H/D exchange observed on addition of D2 nor the 

fluxional process observed on the NMR timescale that retains 

the Rh–H bond. Alternatively, ligand-assisted reductive 

elimination67-69 from a Rh(III) intermediate (II) could result in 

the direct formation of a Rh(I) product without involving I, to 

give 2-iPr (NBD) or 5-iPr (CO, shown). 

The lack of H/D exchange for 4-Me suggests that if C–H 

oxidative addition does operate for this complex, subsequent 

exchange with D2 at the Rh(III) centre70 (e.g. via a s-CAM 

process71) must be a high energy, inaccessible process. By 

extension, the H/D exchange observed in 4-iPr likely proceeds 

by an alternative mechanism and we propose a b-

elimination/dehydrogenative process via an intermediate such 

as III, as previously used to explain, albeit faster, well-defined 

reversible C–H activation processes.72, 73 Subsequent addition of 

D2 would then provide pathways for methine and hydride D-

incorporation. An additional slower, reversible, reductive 

elimination to form I would account for both multiple methyl 

H/D exchanges within one iPr group and for more than one iPr 

group undergoing H/D exchange (i.e., dx > 7 Scheme 3).66 

Consistent with this, HD(dissolved) is also observed [d 4.39, J(HD) = 

43 Hz]. The overall very slow H/D exchange indicates relatively 

significant barriers operate for the formation of I, consistent 

with the observation of an intact Rh–H group on the NMR 

timescale. 

While the intermediate III has not been observed, indirect 

evidence that it is kinetically accessible comes from the reaction 

of 4-iPr with H3B·NMe3 and the hydrogen acceptor tert-butyl 

ethene (tbe). This, slowly (7 days), but cleanly, forms a new 

product, in which a cyclometallated iPr-group has formally 

undergone a double-dehydrogenative borylation74-76 with 

H3B·NMe3 to form a Rh(I) vinylborane complex [Rh(k2-P,P-

(DPEphos-iPr’’-h2-BH2NMe3)][BArF
4], 6-iPr, which is isolated in 

good yield (88%) as a green analytically pure solid. The solid-

state structure of 6-iPr is shown in Scheme 6. This reveals a Rh(I) 

centre complexed with a chelating vinyl amine-borane [C39–  

 

Scheme 6. Synthesis and solid-state structure of 6-iPr. Displacement ellipsoids are 

shown at the 30% probability level. Selected bond distances and angles: Rh1–P1, 

2.3361(9); Rh1–P2, 2.2696(11); Rh1–B1, 2.391(6) ; Rh1–C37, 2.266(3); Rh1–C39, 

2.152(3); Rh1–H1B, 1.99(5); B1–C39, 1.557(6); C37–C38, 1.511(6); C37–C39, 

1.392(6); P1–Rh1–P2, 100.59(4); B1–C39–C37, 123.2(3); Rh1–H1B–B1, 87.8(18). 

 
Figure 8. Comparison of selected structural and spectroscopic data for the 
anagostic/B–H agostic interactions in 6-iPr. Selected aryl groups are removed for 
clarity. a Chemical shifts compared with the vinyl borane PhCH=CPh(BH2·NMe3).79 

C37, 1.392(6) Å] that coordinates to the Rh(I) centre through the 

alkene and a non-classical B–H 3c-2e agostic28 bond[Rh···H1B, 

1.99(5); Rh···B, 2.391(6) Å]. This last distance is suggestive of an 

h2–interaction of the B–H bond with the Rh(I) centre, 

underscored by the rather closed Rh–H1B–B angle, 87.8(18) 

Å.77, 78 The Rh–P bond opposite the weaker trans-influence B–H 

agostic is correspondingly shorter than that opposite the 

alkene. Room temperature NMR data are fully consistent with 

the crystallographically determined structure, showing two 

inequivalent, mutually coupled, environments in the 31P{1H} 

NMR spectrum. In the 1H{11B} NMR spectrum a relative integral 

1H vinyl [d 3.86], B–H(terminal) [d 1.89, d, J(HH) 14 Jz; dcalc = 

+2.2] and agostic B–H···Rh [d –7.54, J(RhH) 14, J(PH) 52, J(HH) 

14 Hz; dcalc = –6.4] are observed. The agostic B–H signal is 

significantly upfield shifted compared to both the terminal B–H 

and the free vinyl borane PhCH=CPh(BH2·NMe3), d 2.40.79 The 
11B{1H} NMR spectrum shows a very broad signal centred at d –

10.2 assigned to the borane. The chelating motif of the amine-

borane in 6-iPr is similar to that reported for RuH2{h2,h2-

HCHB(NiPr2)CH2C6H4PPh2}(PCy3), A,	which also shows a similar 

chemical shift for the h2-M···H–B interaction in the 1H 

spectrum.80 The M···B distance in 6-iPr is longer however, 

[2.391(6) versus 2.173(3) Å] reflecting that there is no vacant p-

orbital on boron available for back donation from the metal, 

unlike for A. 

Particularly noteworthy in the 1H NMR spectrum of 6-iPr are 

two downfield shifted signals (1H relative integral each) at d 

4.92 and 4.75 (dcalc = 5.2 and 4.7), which are comparable to the 

signals assigned to anagostic C–H hydrogens in 5-iPr. Closer 

inspection of the solid-state structure shows that the methine 

C–H protons H49 and H46 are in close approach to the Rh(I) 

centre and orientated above and below the RhP2B1 plane, 

Figure 8, (φ = 66.2º and 64.8º). In comparison, the upfield 

shifted signal, at d –7.54, is due to the agostic 3c-2e Rh···H–B 

motif that sits squarely in the RhP2 plane (φ = 6.6º). 6-iPr thus 

highlights, in a single complex, the relationship between the 

orientation of the approaching E–H bond to the metal centre: 

the C–H anagostic interaction lying above the metal 

coordination plane and the 3c-2e B–H®Rh agostic bond sitting 

within the coordination plane. 
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Table 3. Computed metrics for X–H···Rh (X = B, C) interactions in [6-iPr]+. 

 Distance/Å r(r)a Rh®s*X-H
b sX-H®Rh 

Rh!H1B 1.78 0.083 6.71 52.38 

Rh!H46 2.38 0.024 10.95 0.95 

Rh!H49 2.71 0.015 9.59 0.73 

a BCP electron densities in au. b NBO donor-acceptor interactions in kcal/mol.  

 

Scheme 7. Suggested outline mechanism for the dehydrogenative borylation 4-
iPr. Only key ligands shown. [BArF4]– anion omitted for clarity. 

Selected data from the computational analysis of [6-iPr]+ are 

shown in Table 3 and suggest the Rh!H46 interaction is similar  

in strength to the Rh!H1 interaction in [2-iPr]+. Both these 

C-H!Rh anagostic interactions exhibit relatively weak 

Rh®s*C-H donation. In contrast the 3c-2e B-H!Rh agostic 

motif is markedly stronger and is now dominated by very strong 

donation from an occupied B–H orbital into an unoccupied Rh-

orbital that NBO analysis quantifies at 52.4 kcal/mol, i.e. a 3c-2e 

bond. This is significantly stronger than in the related 

[(NNN)Rh(H3BNMe3)]+ adduct (NNN = 2,6-bis-[1-(2,6-

diisopropyl-phenylimino)ethyl]pyridine),77consistent with a 

much shorter computed Rh!H distance (1.78 A cf. 1.91 A) and 

longer B-H distance (1.35 A cf. 1.28 A) in 6-iPr.  

A suggested, abbreviated, mechanism for the formation of 

6-iPr is shown in Scheme 7: (i) dehydrogenation of an iPr group 

gives intermediate III (Scheme 5),72, 81 (ii) hydroboration of the 

alkene using H3B·NMe3;82 (iii) followed by dehydrogenation, via 

C–H activation/b-elimination.75, 76 Throughout tbe acts as a 

sacrificial hydrogen acceptor. While this scheme captures the 

gross transformations, the precise order of events currently 

remains unresolved. 

Conclusions 

We have shown that aryl-group ortho-substitution in 

[Rh(NBD)(DPEphos-R)]+ leads to differences in structures, 

fluxional processes and reactivities – which can be related to the 

steric bulk of the ortho-group. Broadly speaking, OMe and Me 

substituents lead to solid-state and solution structures that are 

not too dissimilar to parent DPEphos. With the iPr group 

fluxional processes in solution are retarded, and C–H activation 

processes occur. DPEphos-iPr thus cannot be considered an 

innocent ligand, this being related – more broadly – to the  

 
Figure 9. Structural, electronic and NMR properties of anagostic interactions (A) 
and E–H agostic (B) bonds, as based upon Scherer’s analysis. 

decomposition pathways of parent DPEphos that occur via C–O 

bond cleavage.27, 83  

Common to all the Rh(I) DPEPhos-R complexes structurally 

described herein (with their associated NBD, CO or vinylborane 

co-ligands) is the observation of downfield-shifted signals in 

their 1H NMR spectra that signal an anagostic M···H–C 

interaction,28 for which the steric bulk of the ligand determines 

the temperature at which they are observed. As discussed 

previously,30, 38, 40, 45 while such anagostic interactions are 

associated with weak Rh®s*C-H and minimal sC-H ® Rh 

orbital donations, the driver for the downfield chemical shift of 

the C–H protons observed in the 1H NMR spectrum does not 

come from these. Instead, the positioning of the anagostic 

hydrogen with reference to different regions of valence shell for 

the d8 metal centre is important, as Scherer30 has previously 

elegantly described for Rh(CAAC)(CO)Cl systems (CAAC = cyclic 

alkyl-aminocarbene). Our observations here, on a consistent set 

of complexes, reinforce this analysis. Thus, when the hydrogen 

atoms are forced, through steric constraints, to sit in an axial 

position (φ approaching 90º) that places them above a region 

of charge concentration, the associated magnetically-induced 

current density results in a downfield shift in the NMR 

spectrum, Figure 9A. This analysis differentiates anagostic 

interactions from 3c-2e agostic bonds, the latter being 

characterised by upfield shifts in their 1H NMR spectra due to 

the associated hydrogen atoms being located in a region of 

charge depletion in the ligand plane of a d8 ML3 type fragment 

(Figure 9B, φ approaching 0º). Complex 6-iPr offers E–H bonds 

(E = C, B) in both these topologies, and thus show both upfield 

and downfield chemical shifts in the 1H NMR spectrum. While, 

as for 6-iPr, any agostic bond will likely show a significantly 

stronger 3c–2e sX-H ® Rh interaction compared to the weak 

Rh®s*H-C donation associated with the anagostic interactions, 

the relationship, if any, between these bonding descriptors and 

the observed chemical shift has yet to be demonstrated.  

 These observations reinforce the analysis that the chemical 

shift changes observed by 1H NMR spectroscopy in d8 square 

planar complexes with anagostic C–H bonds located above the 

ligand plane result from topologically enforced ring current 

effects, rather than signalling an interaction that has a 

considerable orbital contribution. In this regard they are 

perhaps more related to the chemical shift changes that are 
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well-established for protons that are forced to sit in 

topologically distinct regions close to arenes.30, 84, 85 We thus 

suggest there is a clear demarcation between anagostic 

interactions, and agostic, 3c-2e, bonds; differences that arise 

from both the topological orientation and the nature of the 

orbital interactions that prevail for each. 
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Ortho-substituted DPEphos-R (R = H, Me, OMe, iPr) ligands on Rh(I) centres show anagostic interactions, and for one (R = iPr) undergoes a C–H 

activation/dehydrogenative borylation to form a complex that shows both B–H···Rh 3c-2e agostic and C–H···Rh anagostic motifs at the same metal centre 
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