65 research outputs found

    Super-stretchable paper-based materials for 3D forming

    Get PDF
    Paper is renewable, recyclable, sustainable and biodegradable material and, as a result, paper-based materials are widely used in the world packaging market. However, paper-based materials cannot compete with plastics in terms of processability into various 3D shapes. This is due to poor formability of paper, which is closely associated with its toughness. To improve paper formability, we report on a facile and green method that combines fiber and paper mechanical modifications at different structural levels as well as biopolymer treatment via spraying. As a result, a remarkable elongation of ∌30% was achieved after proposed combined approach on the laboratory scale. At the same time, a significant increase in tensile strength and stiffness (by ∌306% and ∌690%, respectively) was observed. Overall, an inexpensive, green, and scalable approach is introduced to improve formability of fiber networks that in turn allows preparation of 3D shapes in the processes with fixed paper blanks such as vacuum forming, hydroforming, hot pressing, etc

    Conversion of paper to film by ionic liquids : manufacturing process and properties

    Get PDF
    In this study, we investigate the “chemical welding” of paper with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) using a two-step process. First, the IL is transported into the structure of the paper as a water solution. Then, partial dissolution is achieved by activation with heat (80–95 °C), where the water evaporates and the surfaces of the fibres partially dissolve. The activated paper is washed with water to remove IL, and dried to fuse fibre surfaces into each other. The “chemically welded” paper structure has both elevated dry and wet strength. The treatment conditions can be adjusted to produce both paper-like materials and films. The most severe treatment conditions produce films that are fully transparent and their oxygen and grease barrier properties are excellent. As an all-cellulose material, the “chemically welded” paper is fully biodegradable and is a potential alternative to fossil fuel-based plastics.Peer reviewe

    All-Wood Composite Material by Partial Fiber Surface Dissolution with an Ionic Liquid

    Get PDF
    Synthetic structural materials of high mechanical performance are typically either of large weight (for example, steels, and alloys) or involve complex manufacturing processes and thus have high cost or cause adverse environmental impact (for example, polymer-based and biomimetic composites). In this perspective, low-cost, abundant and nature-based materials, such as wood, represent particular interest provided they fulfill the requirements for advanced engineering structures and applications, especially when manufactured totally additive-free. Here, we report on a novel all-wood material concept based on delignification, partial surface dissolution using ionic liquid (IL) followed by densification resulting in a high-performance material. A delignification process using sodium chlorite in acetate buffer solution was applied to controllably delignify the entire bulk wooden material while retaining the highly beneficial structural directionality of wood. In a subsequent step, obtained delignified porous wood template was infiltrated with an IL 1-ethyl-3-methylimidazolium acetate, [EMIM]OAc and heat activated at 95 degrees C to partially dissolve the fiber surface. Afterward, treated wood was washed with water to remove IL and hot-pressed to gain a very compact cellulosic material with fused fibers while retaining unidirectional fiber orientation. The obtained cellulose materials were structurally, chemically, and mechanically characterized revealing superior tensile properties compared to native wood. Furthermore, suggested approach allows almost 8-fold tensile strength improvement in the direction perpendicular to fiber orientation, which is otherwise very challenging to achieve.Peer reviewe

    Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging

    Get PDF
    Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 +/- 1 cm(3)/m(2).day) and water vapor (WVTR of 6 +/- 1 g/m(2).day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.Peer reviewe

    Carboxymethyl Cellulose (CMC) Optical Fibers for Environment Sensing and Short-Range Optical Signal Transmission

    Get PDF
    Optical fibers are a key component in modern photonics, where conventionally used polymer materials are derived from fossil-based resources, causing heavy greenhouse emissions and raising sustainability concerns. As a potential alternative, fibers derived from cellulose-based materials offer renewability, biocompatibility, and biodegradability. In the present work, we studied the potential of carboxymethyl cellulose (CMC) to prepare optical fibers with a core-only architecture. Wet-spun CMC hydrogel filaments were cross-linked using aluminum ions to fabricate optical fibers. The transmission spectra of fibers suggest that the light transmission window for cladding-free CMC fibers was in the range of 550–1350 nm, wherein the attenuation coefficient for CMC fibers was measured to be 1.6 dB·cm–1 at 637 nm. CMC optical fibers were successfully applied in touch sensing and respiratory rate monitoring. Finally, as a proof-of-concept, we demonstrate high-speed (150 Mbit/s) short-distance signal transmission using CMC fibers (at 1310 nm) in both air and water media. Our results establish the potential of carboxymethyl cellulose-based biocompatible optical fibers for highly demanding advanced sensor applications, such as in the biomedical domain.publishedVersionPeer reviewe

    Advanced Structures and Compositions for 3D Forming of Cellulosic Fibers:Dissertation

    No full text
    The objective of this thesis was to systematically investigate strategies to endow fiber-based materials with toughness and formability. Bio-based polymers and green treatments were applied to develop 3D packaging structures. Formability, the material's ability for three-dimensional shaping, was achieved by plastic deformations in paper structures that were defect-free in terms of appearance and functionality. A set of methods to improve paper toughness was explored, including: (a) combined mechanical treatment of fibers in aqueous dispersions of high- and low-solids content, (b) in-plane compression of paper webs followed by unrestrained drying and (c) chemical modification of fiber joints by protein spraying. The mechanical treatment of fiber suspensions at elevated temperature and high solids content induced permanent fiber deformations, including kinks and curls, which are associated with the formation of microcompressions and dislocations. In turn, they increased the extensibility but compromised the axial stiffness of single fibers. Simultaneously, shrinkage of fibers and paper webs were promoted. In contrast, the low-consistency treatment straightened the fibers while their deformations were partly preserved. Fiber bonding was promoted by fibrillation. The application of gelatin affected the strength of fiber joints and improved their deformation ability, making strong fiber webs. The drying shrinkage was also increased. The fiber network was subjected to in-plane compressive treatment and drying shrinkage, which led to fiber buckling and network compression. The role of proteins as compatibilizers and eco-friendly dispersants in composites comprising cellulose nanofibrils (CNF) and thermoformable polylactide (PLA) was also investigated. The combination of mechanical and protein treatment of fibers and their structures improved paper extensibility, from 5% to 29%. Moreover, tray-like shapes were possible with a level of out-of-plane deformation that has not been recorded before for thermoforming with a fixed blank. Overall, this thesis provides fundamental and practical knowledge about the role of several factors contributing to paper toughness and formability. The suggested modification strategies to improve paper toughness are compatible with modern papermaking and conversion processes and can be implemented easily and economically

    Extensible Cellulosic Fibre-polyurethane Composites Prepared via the Papermaking Pathway

    No full text
    Formable papers can be used as an alternative to rigid plastics for making 3D shapes for packaging applications. However, commercial use of formable paper is currently limited, due to its poor extensibility. Cellulosic fibres can be combined with polyurethanes to improve the deformability of resulting fibre-polymer composites. This work describes the effect of spray and wet-end addition of polyurethane dispersions to paper to enhance the extensibility and formability of paper. The increase in extensibility was directly proportional to the amount of polyurethane retained in the paper. Absolute improvements in extensibility were as high as 4 to 6 percentage points. Improved extensibility resulted in better formability of paper, which eventually could allow it to compete with plastic packaging in certain applications.Peer reviewe
    • 

    corecore