302 research outputs found
Pattern Formation of Glioma Cells: Effects of Adhesion
We investigate clustering of malignant glioma cells. \emph{In vitro}
experiments in collagen gels identified a cell line that formed clusters in a
region of low cell density, whereas a very similar cell line (which lacks an
important mutation) did not cluster significantly. We hypothesize that the
mutation affects the strength of cell-cell adhesion. We investigate this effect
in a new experiment, which follows the clustering dynamics of glioma cells on a
surface. We interpret our results in terms of a stochastic model and identify
two mechanisms of clustering. First, there is a critical value of the strength
of adhesion; above the threshold, large clusters grow from a homogeneous
suspension of cells; below it, the system remains homogeneous, similarly to the
ordinary phase separation. Second, when cells form a cluster, we have evidence
that they increase their proliferation rate. We have successfully reproduced
the experimental findings and found that both mechanisms are crucial for
cluster formation and growth.Comment: 6 pages, 6 figure
A generalized Cahn-Hilliard equation for biological applications
Recently we considered a stochastic discrete model which describes fronts of
cells invading a wound \cite{KSS}. In the model cells can move, proliferate,
and experience cell-cell adhesion. In this work we focus on a continuum
description of this phenomenon by means of a generalized Cahn-Hilliard equation
(GCH) with a proliferation term. As in the discrete model, there are two
interesting regimes. For subcritical adhesion, there are propagating "pulled"
fronts, similarly to those of Fisher-Kolmogorov equation. The problem of front
velocity selection is examined, and our theoretical predictions are in a good
agreement with a numerical solution of the GCH equation. For supercritical
adhesion, there is a nontrivial transient behavior, where density profile
exhibits a secondary peak. To analyze this regime, we investigated relaxation
dynamics for the Cahn-Hilliard equation without proliferation. We found that
the relaxation process exhibits self-similar behavior. The results of continuum
and discrete models are in a good agreement with each other for the different
regimes we analyzed.Comment: 11 figures, submitted to PR
The role of cell-cell adhesion in wound healing
We present a stochastic model which describes fronts of cells invading a
wound. In the model cells can move, proliferate, and experience cell-cell
adhesion. We find several qualitatively different regimes of front motion and
analyze the transitions between them. Above a critical value of adhesion and
for small proliferation large isolated clusters are formed ahead of the front.
This is mapped onto the well-known ferromagnetic phase transition in the Ising
model. For large adhesion, and larger proliferation the clusters become
connected (at some fixed time). For adhesion below the critical value the
results are similar to our previous work which neglected adhesion. The results
are compared with experiments, and possible directions of future work are
proposed.Comment: to appear in Journal of Statistical Physic
Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars
Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations
Symmetry-breaking instability in a prototypical driven granular gas
Symmetry-breaking instability of a laterally uniform granular cluster (strip
state) in a prototypical driven granular gas is investigated. The system
consists of smooth hard disks in a two-dimensional box, colliding inelastically
with each other and driven, at zero gravity, by a "thermal" wall. The limit of
nearly elastic particle collisions is considered, and granular hydrodynamics
with the Jenkins-Richman constitutive relations is employed. The hydrodynamic
problem is completely described by two scaled parameters and the aspect ratio
of the box. Marginal stability analysis predicts a spontaneous symmetry
breaking instability of the strip state, similar to that predicted recently for
a different set of constitutive relations. If the system is big enough, the
marginal stability curve becomes independent of the details of the boundary
condition at the driving wall. In this regime, the density perturbation is
exponentially localized at the elastic wall opposite to the thermal wall. The
short- and long-wavelength asymptotics of the marginal stability curves are
obtained analytically in the dilute limit. The physics of the symmetry-breaking
instability is discussed.Comment: 11 pages, 14 figure
Patterns and Collective Behavior in Granular Media: Theoretical Concepts
Granular materials are ubiquitous in our daily lives. While they have been a
subject of intensive engineering research for centuries, in the last decade
granular matter attracted significant attention of physicists. Yet despite a
major efforts by many groups, the theoretical description of granular systems
remains largely a plethora of different, often contradicting concepts and
approaches. Authors give an overview of various theoretical models emerged in
the physics of granular matter, with the focus on the onset of collective
behavior and pattern formation. Their aim is two-fold: to identify general
principles common for granular systems and other complex non-equilibrium
systems, and to elucidate important distinctions between collective behavior in
granular and continuum pattern-forming systems.Comment: Submitted to Reviews of Modern Physics. Full text with figures (2Mb
pdf) avaliable at
http://mti.msd.anl.gov/AransonTsimringReview/aranson_tsimring.pdf Community
responce is appreciated. Comments/suggestions send to [email protected]
Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population
In the current model of early Solar System evolution, the stable members of
the Jovian and Neptunian Trojan populations were captured into resonance from
the leftover reservoir of planetesimals during the outward migration of the
giant planets. As a result, both Jovian and Neptunian Trojans share a common
origin with the primordial disk population, whose other surviving members
constitute today's trans-Neptunian object (TNO) populations. The cold classical
TNOs are ultra-red, while the dynamically excited "hot" population of TNOs
contains a mixture of ultra-red and blue objects. In contrast, Jovian and
Neptunian Trojans are observed to be blue. While the absence of ultra-red
Jovian Trojans can be readily explained by the sublimation of volatile material
from their surfaces due to the high flux of solar radiation at 5AU, the lack of
ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation
models. In this work we report the discovery by the Dark Energy Survey (DES) of
two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both
with inclinations i >30 degrees, making them the highest-inclination known
stable Neptunian Trojans. We have measured the colors of these and three other
dynamically stable Neptunian Trojans previously observed by DES, and find that
2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such,
2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using
a simulation of the DES TNO detection efficiency, we find that there are 162
+/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the
blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based
on this result, we discuss the possible origin of the ultra-red Neptunian
Trojan population and its implications for the formation history of Neptunian
Trojans
The minimization of mechanical work in vibrated granular matter
Experiments and computer simulations are carried out to investigate phase separation in a granular gas under vibration. The densities of the dilute and the dense phase are found to follow a lever rule and obey an equation of state. Here we show that the Maxwell equal-areas construction predicts the coexisting pressure and binodal densities remarkably well, even though the system is far from thermal equilibrium. This construction can be linked to the minimization of mechanical work associated with density fluctuations without invoking any concept related to equilibrium-like free energies
Dynamical analysis of three distant trans-Neptunian objects with similar orbits
This paper reports the discovery and orbital characterization of two extreme trans-Neptunian objects (ETNOs), 2016 QV 89 and 2016 QU 89 , which have orbits that appear similar to that of a previously known object, 2013 UH 15 . All three ETNOs have semi-major axes a≈172 AU and eccentricities e≈0.77 . The angular elements (i,ω,Ω) vary by 6, 15, and 49 deg, respectively between the three objects. The two new objects add to the small number of TNOs currently known to have semi-major axes between 150 and 250 AU, and serve as an interesting dynamical laboratory to study the outer realm of our Solar System. Using a large ensemble of numerical integrations, we find that the orbits are expected to reside in close proximity in the (a,e) phase plane for roughly 100 Myr before diffusing to more separated values. We then explore other scenarios that could influence their orbits. With aphelion distances over 300 AU, the orbits of these ETNOs extend far beyond the classical Kuiper Belt, and an order of magnitude beyond Neptune. As a result, their orbital dynamics can be affected by the proposed new Solar System member, referred to as Planet Nine in this work. With perihelion distances of 35-40 AU, these orbits are also influenced by resonant interactions with Neptune. A full assessment of any possible, new Solar System planets must thus take into account this emerging class of TNOs
- …